Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal logo SOERE PRO Logo CIRAD Logo AnaEE Logo IRD Logo Ouagadougou university

Home page

Microbial communities from different soil types respond differently to organic waste input.

Sadet-Bourgeteau, S. ; Houot, S. ; Karimi, B. ; Mathieu, O. ; Mercier, V. ; Montenach, D. ; Morvan, T. ; Sappin-Didier, V. ; Watteau, F. ; Nowak, V. ; Dequiedt, S. ; Maron, P.-A.

Sadet-Bourgeteau & al (2019)
© Sadet-Bourgeteau et al 2019
Sadet-Bourgeteau & al., Applied Soil Ecology 143 (2019) 70–79


 [Using organic waste products (OWP) in agriculture has been reported to impact both the activity and composition of soil microbial communities. However, little information is available on how the response of a soil microbial community to a given OWP may depend on the physicochemical and microbial properties of the soil receiving the input. Here, we performed a microcosm experiment to compare the effect of 2 different OWPs (GWS: co-compost of Green Wastes and Sewage sludge or FYM: FarmYard Manure), each applied to 5 different soils, on the activity, abundance and diversity of the soil microbial communities. Soils were selected to represent a range of physicochemical and climatic characteristics. CO2 and N2O emissions, microbial biomass and taxonomic diversity were monitored for 28 days following OWP input. The five soils presented different prokaryotic and fungal communities structures before OWP application. During the 28 days of incubation, those control soils (without OWP) harboring the highest organic matter contents released the greatest CO2 and N2O emissions, and had the highest soil microbial biomass. The impact of organic amendments on soil activity and microbial diversity differed with the nature of the OWP. FYM application increased CO2 emissions 2-fold and delayed N2O emissions compared to GWS. Major changes in prokaryotic genetic structures were also observed when GWS was applied. The effect of OWPs was dependent on soil type and the five soils exhibited distinct patterns of CO2 and N2O emission after a given input. This accorded with the fact that the structure and composition of the microbial communities harbored by each soil type responded differently to a given OWP application. To conclude, our results show that different soil types, harboring distinct microbial community structures, responded differently to OWP application, leading to different patterns and rates of greenhouse gas emissions. This response was also OWP-dependent.] 

Keywords: soil microbes; soils incubation; CO2; N2O; high throughput sequencing approach.

Sadet-Bourgeteau et al 2019