Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal logo SOERE PRO Logo CIRAD Logo AnaEE Logo IRD Logo Ouagadougou university

Home page

The simple AMG model accurately simulates organic carbon storage in soils after repeated application of exogenous organic matter

Levavasseur, F., Mary, B., Christensen, B.T., Duparque, A., Ferchaud, F., Kätterer, T., Lagrange, H., Montenach, D., Resseguier, C., Houot, S.

Observed (dots) and simulated (lines) differences in SOC stocks between the treatments with EOM and without EOM for the seven long-term field experiments
© Springer Nature B.V. 2020
Levavasseur & al., Nutrient Cycling in Agroecosystems 117, 215–229 (2020) 10.1007/s10705-020-10065-x


Repeated application of exogenous organic matter (EOM) contributes to soil organic carbon (SOC) stocks in cropped soils. Simple and robust models such as the AMG model are useful tools for predicting the effects of various EOM practices on SOC. In AMG, EOM is characterized by a single parameter: the humification rate h, which represents the proportion of exogenous carbon that is incorporated into SOC. The AMG model has been validated for a range of pedo-climatic conditions and cropping systems, but has not yet been tested with data from long-term field experiments where EOM is regularly applied. The calibration of the EOM parameter h also remains an issue. In this study, AMG was used to simulate SOC stocks in seven long-term field experiments with EOM application. AMG predicted changes in SOC stocks with a mean RMSE of 3.0 t C ha−1 when h values were optimized. The optimized h values were highly correlated (R2= 0.62) with the indicator of remaining organic carbon (IROC), measured by laboratory analysis. The present study demonstrates (1) the ability of the AMG model to accurately simulate SOC stocks evolution in long-term field experiments with regular EOM application and (2) the ability of calibrating the model using IROC, which is routinely measured by commercial laboratories. The parameter h was determined for 26 EOM types utilizing a database of more than 600 IROC. The AMG model can thus be used to predict the SOC increase following EOM addition with a very simple calibration.

Keywords: organic amendment, organic fertilizer, EOM, soil organic carbon stock, model, AMG.

Levavasseur & al., 2020

Observed (dots) and simulated (lines) differences in SOC stocks between the treatments with EOM and without EOM for the seven long-term field experiments