En savoir plus

A propos des cookies

Qu’est-ce qu’un « cookie » ?

Un "cookie" est une suite d'informations, généralement de petite taille et identifié par un nom, qui peut être transmis à votre navigateur par un site web sur lequel vous vous connectez. Votre navigateur web le conservera pendant une certaine durée, et le renverra au serveur web chaque fois que vous vous y re-connecterez.

Différents types de cookies sont déposés sur les sites :

  • Cookies strictement nécessaires au bon fonctionnement du site
  • Cookies déposés par des sites tiers pour améliorer l’interactivité du site, pour collecter des statistiques

> En savoir plus sur les cookies et leur fonctionnement

Les différents types de cookies déposés sur ce site

Cookies strictement nécessaires au site pour fonctionner

Ces cookies permettent aux services principaux du site de fonctionner de manière optimale. Vous pouvez techniquement les bloquer en utilisant les paramètres de votre navigateur mais votre expérience sur le site risque d’être dégradée.

Par ailleurs, vous avez la possibilité de vous opposer à l’utilisation des traceurs de mesure d’audience strictement nécessaires au fonctionnement et aux opérations d’administration courante du site web dans la fenêtre de gestion des cookies accessible via le lien situé dans le pied de page du site.

Cookies techniques

Nom du cookie

Finalité

Durée de conservation

Cookies de sessions CAS et PHP

Identifiants de connexion, sécurisation de session

Session

Tarteaucitron

Sauvegarde vos choix en matière de consentement des cookies

12 mois

Cookies de mesure d’audience (AT Internet)

Nom du cookie

Finalité

Durée de conservation

atid

Tracer le parcours du visiteur afin d’établir les statistiques de visites.

13 mois

atuserid

Stocker l'ID anonyme du visiteur qui se lance dès la première visite du site

13 mois

atidvisitor

Recenser les numsites (identifiants unique d'un site) vus par le visiteur et stockage des identifiants du visiteur.

13 mois

À propos de l’outil de mesure d’audience AT Internet :

L’outil de mesure d’audience Analytics d’AT Internet est déployé sur ce site afin d’obtenir des informations sur la navigation des visiteurs et d’en améliorer l’usage.

L‘autorité française de protection des données (CNIL) a accordé une exemption au cookie Web Analytics d’AT Internet. Cet outil est ainsi dispensé du recueil du consentement de l’internaute en ce qui concerne le dépôt des cookies analytics. Cependant vous pouvez refuser le dépôt de ces cookies via le panneau de gestion des cookies.

À savoir :

  • Les données collectées ne sont pas recoupées avec d’autres traitements
  • Le cookie déposé sert uniquement à la production de statistiques anonymes
  • Le cookie ne permet pas de suivre la navigation de l’internaute sur d’autres sites.

Cookies tiers destinés à améliorer l’interactivité du site

Ce site s’appuie sur certains services fournis par des tiers qui permettent :

  • de proposer des contenus interactifs ;
  • d’améliorer la convivialité et de faciliter le partage de contenu sur les réseaux sociaux ;
  • de visionner directement sur notre site des vidéos et présentations animées ;
  • de protéger les entrées des formulaires contre les robots ;
  • de surveiller les performances du site.

Ces tiers collecteront et utiliseront vos données de navigation pour des finalités qui leur sont propres.

Accepter ou refuser les cookies : comment faire ?

Lorsque vous débutez votre navigation sur un site eZpublish, l’apparition du bandeau « cookies » vous permet d’accepter ou de refuser tous les cookies que nous utilisons. Ce bandeau s’affichera tant que vous n’aurez pas effectué de choix même si vous naviguez sur une autre page du site.

Vous pouvez modifier vos choix à tout moment en cliquant sur le lien « Gestion des cookies ».

Vous pouvez gérer ces cookies au niveau de votre navigateur. Voici les procédures à suivre :

Firefox ; Chrome ; Explorer ; Safari ; Opera

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de INRAE par email à cil-dpo@inrae.fr ou par courrier à :

INRAE
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2021

Menu Logo Principal IFV BX SCIENCES AGRO ISVV

UMT SEVEN

Joint Structure and Colour Based Parametric Classification of Grapevine Organs from Proximal Images Through Several Critical Phenological Stages

Precision agriculture
14th International conference on precision agriculture, june, 24th-27th 2018, Montreal, Quebec, Canada

Joint Structure and Colour Based Parametric Classification of Grapevine Organs from Proximal Images Through Several Critical Phenological Stages

F. Y. Abdelghafour, R. Rosu, B. Keresztes, C. Germain, J. Da Costa (2018)

Abstract

Proximal colour imaging is the most time and cost-effective automated technology to acquire high-resolution data describing accurately the trellising plane of grapevine. The available textural information is meaningful enough to provide altogether the assessment of additional agronomic parameters that are still estimated either manually or with dedicated and expensive instrumentations. This paper proposes a new framework for the classification of the different organs visible in the trellising plane. The proposed method is an implementation of a Bayesian decision process based on a joint parametric representation of Local Structure tensors and color. The purpose is to obtain a pixel-wise description of grapevine images based on joint structural and colorimetric features. In this paper, a representation of colour extended structure tensors mapped into the log-Euclidean metric space is introduced. This new feature is used for the description of the textural properties of grapevine organs in multivariate Gaussian models. The final classification is performed by Bayesian MAP estimation based on the models. The paper presents and compares different variants of the method which are applied to three key phenological stage: flowerhood falling, pea-sized and berries touching (BBCH 68, 75, 79).

The resulting classification performances are measured in terms of recall and precision that reached overall between 80% and 90% depending on the stage. These results are produced with leave-one-out cross validations where models are estimated from 15 images per stage containing about 1.5e6 samples. The achievement of a reliable classification of the leaves, flowers and berries for each vinestock is an integral step toward the estimation of leaf area index, leaf porosity, fruitfulness, cluster structuration and yields. These are key parameters for the monitoring and evaluation of main field works such as fertilisation, irrigation, and trimming, defoliation, trimming and thinning. In addition the modeling of healthy grapevine organs is also preliminary to achieve a modeling and classification of grapevine major fungal diseases

Keyword

Proximal sensing, parametric classification, structure tensor, grape and foliage detection