

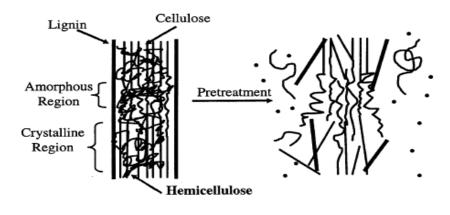
N POLITECNICO DI MILANO

ALKALINE PRETREATMENT OF SORGHUM AND WHEAT STRAW FOR INCREASING METHANE PRODUCTION

Cecilia Sambusiti, Elena Ficara, Francesca Malpei

DIIAR - Environmental Section

Lignocellulosic substrates can be converted into biomethane... but...


Lignocellulosic substrates are composed of:

- Cellulose (20-50 %): Linear polymer of glucose units linked by β-(1-4)-glycosidic bonds.
- ✓ Hemicellulose (20-40 %): Highly branched and complex heteropolymer that contains hexoses, pentoses, and uronic acids.
- Lignin (15-25 %): Aromatic polymer containing phenolic residues.
- ✓ Other components: Small quantity

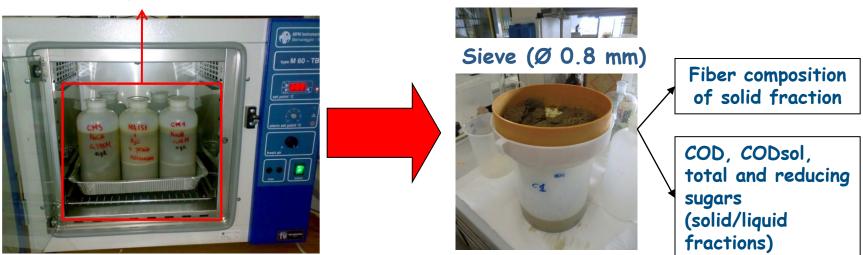
GOALS

- Alter the structure and increase the porosity of the substrate
- Remove lignin
- Reduce the crystallinity of cellulose
- Make cellulose and hemicellulose more accessible for enzymatic hydrolysis

Ref.: Moisier et al., 2005

PRETREATMENT TECHNIQUES

- Physical (milling, ultrasonic,...)
- Thermal (Pressure cooking, Steam Explosion (ST/SE), Liquid Hot Water (LHW),...)
- Chemical (alkaline, acid,..)
- Biological (enzymes and microorganisms)



To investigate the effects of alkaline pretreatment on fiber composition and to determine the anaerobic methane production of untreated and pretreated sorghum silage and wheat straw

Parameter	Sorghum silage	Wheat straw		
Ø (mm)	0.5-1.5			
TS (g/100g)	96.7	97.6		
VS/TS (g/100g)	86.3	92.5		
COD/VS	1.2	1.2		
NDF-ADF-ADL (g/100gTS)	65.0 - 46.7 - 3.9	73.1 - 50.6 - 5.9		
Protein-Fats-Fibres-Ashes (g/100gTS)	9.1 - 1.3 - 35.3-13.0	3.0 - 0.3 - 39.3 -8.6		
Cellulose (g/100gTS)	42.9	44.8		
Hemicellulose (g/100gTS)	18.3	22.5		
Lignin (g/100gTS)	3.9	5.9		

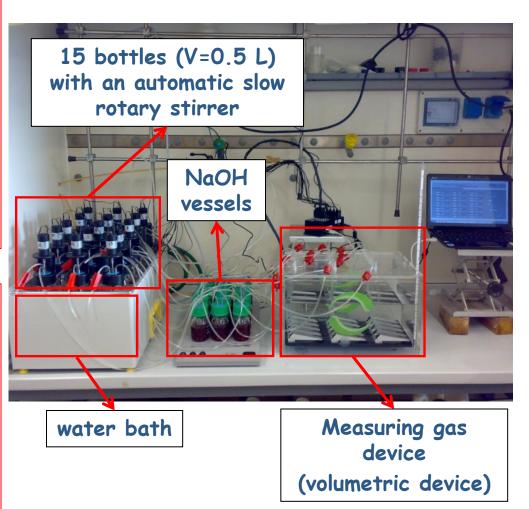
Parameter	U.M	Method	
TS, VS, COD, CODsol	g/L	APAT-IRSA CNR, 2003	
ADF-NDF-ADL, protein-fats- fibres and ashes	g/100gTS	Near - infrared Spectroscopy method Van Soest method (Goering et al., 1970)	
Total sugars	g/L	Dubois et al., 1956	
Reducing sugars	g/L	Somogy, 1952	

Plastic bottles with a volume of 2L

Raw substrates Specific dosage			Duration (h)
Sorghum silage and wheat straw	Control (6 gH ₂ O/gTS)		
	1 gNaOH/100gTS	40	24
	3 gNaOH/100gTS	40	24
	10 gNaOH/100gTS		

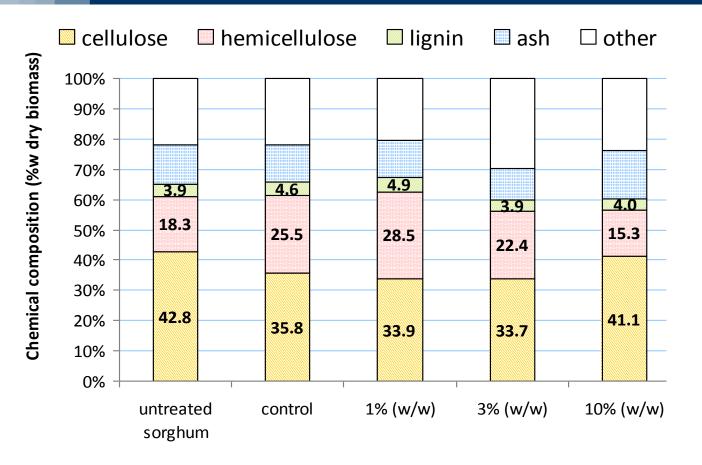
SUBSTRATES

Raw and pretreated substrates


INOCULUM

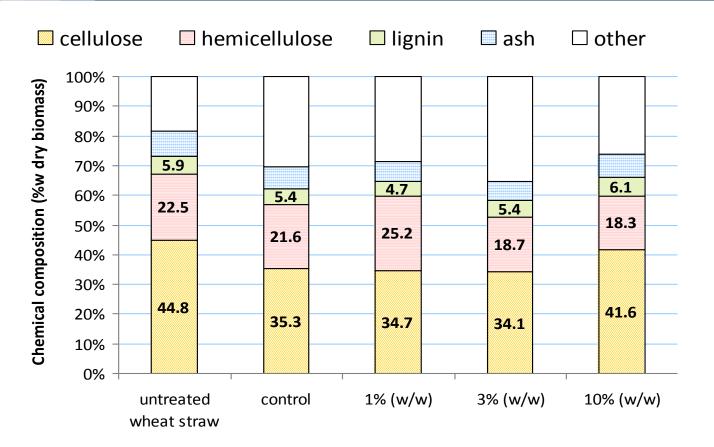
Mix of two digested sludges (WWTP digester and Agrowastes digester)

INITIAL CONDITIONS


5gVS/L inoculum sludge washed with mineral medium

- 0.5 L test volume
- F/M= 0.9-1 gVS/gVS
- ≻ T = 35 ± 0.5°C

POLITECNICO DI MILANO


Results and discussion - Chemical composition changes

Cellulose content reduction
Hemicellulose content reduction (high alkaline dosage)
No clear tendency in lignin content

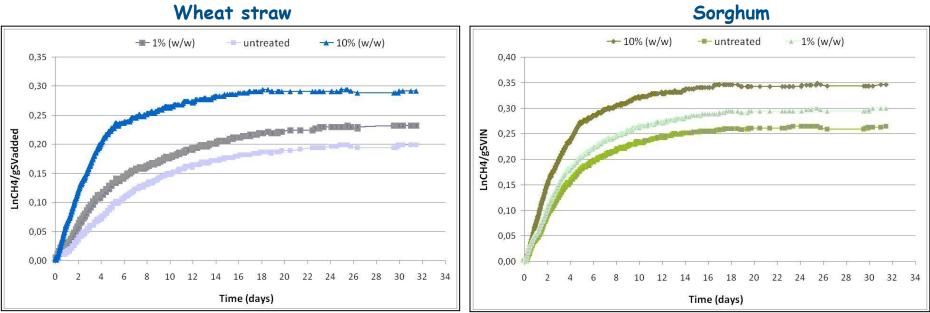
Cecilia Sambusiti

Results and discussion - Chemical composition changes

>A reduction in fiber content is observed for all soaked samples

>No clear tendency in lignin content

Cecilia Sambusiti

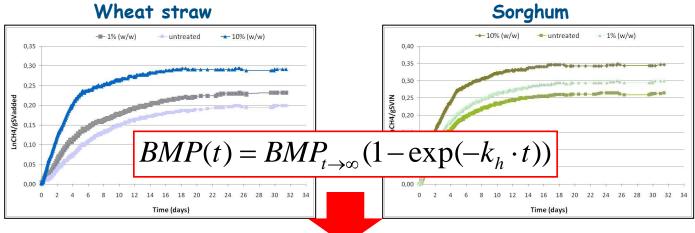

Absolute (g/L) and relative (% of the initial total COD) soluble COD released after 24h soaking.

Feedstock	NaOH dosage (g/100gTS)					
	0	1	3	10		
Sorghum	15 <i>(9%)</i>	14 <i>(8%)</i>	22 (13%)	58 <i>(33%)</i>		
Wheat straw	12 (7%)	11 (6%)	21 <i>(12%)</i>	42 <i>(24%)</i>		

>An increase in NaOH dosage led to a significant increase in COD solubilization.

Results and discussion - BMP tests

Wheat straw


	B (%)	I _{CH4} (%)
untreated sorghum	66%	-
1% (gNaOH/gTS)	73%	+11%
10% (gNaOH/gTS)	86%	+29%
untreated wheat straw	56%	
1% (gNaOH/gTS)	63%	+12%
10% (gNaOH/gTS)	72%	+29%

POLITECNICO DI MILANO

Cecilia Sambusiti

Results and discussion - BMP tests

Wheat straw

			° 0	bserved	—es	stimated		
	0,70 -							
	0,60 -			and the set of the set		,	•••• • • • • • • • • • • • • • • • • •	
	0,50 -			La antica de la constante de la				
4 4	0,40 -		\square					
LnCH4	0,30 -							
	0,20 -							
	0,10 -	/						
	0,00 -		1			1	1	
	(C	5	10	15	20	25	30
				Tim	e (days)			

	k _h (d ⁻¹)	I _{kh} (%)
untreated sorghum	0.21	-
1% (gNaOH/gTS)	0.23	+10
10% (gNaOH/gTS)	0.28	+33
untreated wheat straw	0.10	-
1% (gNaOH/gTS)	0.16	+60
10% (gNaOH/gTS)	0.27	+170

Cecilia Sambusiti

 \checkmark Alkaline pretreatment is a promising process to improve the biodegradability of sorghum and wheat straw

 \checkmark An increase in NaOH loadings led to a significant increase in:

- COD solubilization
- Methane production (up to 29%)

• Hydrolysis kinetic (the first order hydrolysis kinetic constant increased by 33% and by 170% for sorghum and wheat straw, respectively)

Merci

Cecilia Sambusiti

POLITECNICO DI MILANO