Reduction of the ADM1 model

Sonia Hassam - B. Cherki - E. Ficara - J. Harmand

Université Aboubakr Belkaïd de Tlemcen - LAT

Narbonne - June 2011

(日) (同) (三) (三)

э

Introduction

Model reduction Formulation of the reduced model Study of the reduced model at steady state Sensitivity study Conclusion

• The ADM1 (Anaerobic Digestion Model No.1) model:

Sonia Hassam - B. Cherki - E. Ficara - J. Harmand Reduction of the ADM1 model

< 17 ▶

A B M A B M

э

- The ADM1 (Anaerobic Digestion Model No.1) model:
 - describes the anaerobic degradation, by different functional microbial species, of complex substrates into intermediate metabolites (notably Volatile Fatty Acids or VFA) and then to gaseous methane.

- The ADM1 (Anaerobic Digestion Model No.1) model:
 - describes the anaerobic degradation, by different functional microbial species, of complex substrates into intermediate metabolites (notably Volatile Fatty Acids or VFA) and then to gaseous methane.
 - considers the degradation of the organic matter from its most complex, i.e. the composite organics to its simplest forms, i.e. the gaseous degradation products: CO₂, CH₄, H₂.

- The ADM1 (Anaerobic Digestion Model No.1) model:
 - describes the anaerobic degradation, by different functional microbial species, of complex substrates into intermediate metabolites (notably Volatile Fatty Acids or VFA) and then to gaseous methane.
 - considers the degradation of the organic matter from its most complex, i.e. the composite organics to its simplest forms, i.e. the gaseous degradation products: CO₂, CH₄, H₂.
 - is a high order nonlinear model, not suited for control design.

- The ADM1 (Anaerobic Digestion Model No.1) model:
 - describes the anaerobic degradation, by different functional microbial species, of complex substrates into intermediate metabolites (notably Volatile Fatty Acids or VFA) and then to gaseous methane.
 - considers the degradation of the organic matter from its most complex, i.e. the composite organics to its simplest forms, i.e. the gaseous degradation products: CO₂, CH₄, H₂.
 - is a high order nonlinear model, not suited for control design.
- Model reduction techniques appear as appropriate tools for obtaining reduced order linear or nonlinear models.

Simplification of the kinetics equations and components

- - E + - E +

Simplification of the kinetics equations

• Monod growth rate expression:

$$\mu(S) = \mu_{\max} \frac{S}{S + K_S}$$

 $\begin{array}{l} \mu_{\max} \rightarrow \mbox{The maximum growth rate (1/day)} \\ \mathcal{K}_S \rightarrow \mbox{The half-saturation constant (gCOD/L)} \\ S \rightarrow \mbox{The substrate (gCOD/L)} \\ \mu(S) \rightarrow \mbox{The growth rate (1/day)} \end{array}$

Simplification of the kinetics equations and components

Simplification of the kinetics equations

• Monod growth rate expression:

$$\mu(S) = \mu_{\max} \frac{S}{S + K_S}$$

$$\begin{array}{l} \mu_{\max} \rightarrow \mbox{The maximum growth rate (1/day)} \\ \mathcal{K}_S \rightarrow \mbox{The half-saturation constant (gCOD/L)} \\ \mathcal{S} \rightarrow \mbox{The substrate (gCOD/L)} \\ \mu(\mathcal{S}) \rightarrow \mbox{The growth rate (1/day)} \end{array}$$

• Blackman growth rate expression:

$$\mu(S) = \begin{cases} \frac{\mu_{\max}}{K_S} \text{ if } S \leq K_S \\ \mu_{\max} \text{ if } S > K_S \end{cases}$$

Simplification of the kinetics equations and components

∃ >

Simplification of components

• Biochemical equations are the core of any model describing a biological system.

Simplification of the kinetics equations and components

Simplification of components

- Biochemical equations are the core of any model describing a biological system.
- We assume that it is enough to suit our objectives by neglecting all chemical or physicochemical phenomena.

Simplification of the kinetics equations and components

Simplification of components

- Biochemical equations are the core of any model describing a biological system.
- We assume that it is enough to suit our objectives by neglecting all chemical or physicochemical phenomena.
- We remove the state variables whose dynamics are uncoupled from other components:
 - Solube inert component S_I
 - Particulate inert component X_l

Simplification of the slow dynamics of the ADM1 model Expression of the reduced model

A D

The Homotopy method

 Based on the eigenvalue-state association in which slow dynamics are considered as constants in the reduced model

Simplification of the slow dynamics of the ADM1 model Expression of the reduced model

The Homotopy method

- Based on the eigenvalue-state association in which slow dynamics are considered as constants in the reduced model
- De Carlo and Saeks (1979), Wasynczuk and De Carlo (1981), Robertson (1992)

Simplification of the slow dynamics of the ADM1 model Expression of the reduced model

The Homotopy method

- Based on the eigenvalue-state association in which slow dynamics are considered as constants in the reduced model
- De Carlo and Saeks (1979), Wasynczuk and De Carlo (1981), Robertson (1992)
- Implies starting with a system in which the relation eigenvalues-states is obvious such as a decoupled system or a diagonalised matrix A. The transformation is described by the equation:

Simplification of the slow dynamics of the ADM1 model Expression of the reduced model

- 4 同 2 4 日 2 4 日 2

The Homotopy method

۵

- Based on the eigenvalue-state association in which slow dynamics are considered as constants in the reduced model
- De Carlo and Saeks (1979), Wasynczuk and De Carlo (1981), Robertson (1992)
- Implies starting with a system in which the relation eigenvalues-states is obvious such as a decoupled system or a diagonalised matrix A. The transformation is described by the equation:

 $H(r) = (1 - r).A_D + r.A \qquad 0 \le r \le 1$

Simplification of the slow dynamics of the ADM1 model Expression of the reduced model

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

• *H* Homotopy matrix

Sonia Hassam - B. Cherki - E. Ficara - J. Harmand Reduction of the ADM1 model

Simplification of the slow dynamics of the ADM1 model Expression of the reduced model

17 ▶

- *H* Homotopy matrix
- A_D matrix representing the decoupled equations (diagonal of A)

Simplification of the slow dynamics of the ADM1 model $\ensuremath{\mathsf{Expression}}$ of the reduced model

- *H* Homotopy matrix
- *A_D* matrix representing the decoupled equations (diagonal of A)
- A the matrix of the linearized model

Simplification of the slow dynamics of the ADM1 model Expression of the reduced model

- *H* Homotopy matrix
- A_D matrix representing the decoupled equations (diagonal of A)
- A the matrix of the linearized model
- *r* a parameter that allows to obtain a linear progression from the decoupled system to the coupled one

Simplification of the slow dynamics of the ADM1 model Expression of the reduced model

A D

• *H* is obtained in proceeding from the decoupled system by varying *r* from 0 to 1, the eigenvalues of *H* being calculated for each value of *r*

Simplification of the slow dynamics of the ADM1 model Expression of the reduced model

- *H* is obtained in proceeding from the decoupled system by varying *r* from 0 to 1, the eigenvalues of *H* being calculated for each value of *r*
- It is assumed that the system admits at least one equilibrium point locally asymptotically stable

Simplification of the slow dynamics of the ADM1 model $\ensuremath{\mathsf{Expression}}$ of the reduced model

- *H* is obtained in proceeding from the decoupled system by varying *r* from 0 to 1, the eigenvalues of *H* being calculated for each value of *r*
- It is assumed that the system admits at least one equilibrium point locally asymptotically stable
- The homotopy method is applied to a stable equilibrium point of the differential system (11 differential equations for the soluble components, 11 for the particulate ones)

Simplification of the slow dynamics of the ADM1 model Expression of the reduced model

< 67 >

• = • • =

э

Simulation results

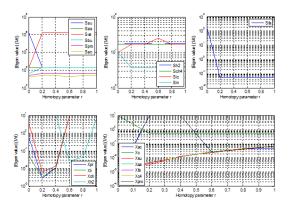


Figure 1 - Results of the homotopy method on the fast and slow variables

Sonia Hassam - B. Cherki - E. Ficara - J. Harmand Reduction of the ADM1 model

Simplification of the slow dynamics of the ADM1 model $\ensuremath{\mathsf{Expression}}$ of the reduced model

State variables	Eigenvalues $(1/d)$	$\tau(h)$	
S _{va}	—1585389, 931	0,00002	
S _{aa}	—200, 050	0,119	
S _{su}	-200, 049	0,119	
S _{bu}	—196, 449	0, 122	
S _{pro}	-40, 870	0, 587	
S _{ac}	—25, 162	0, 953	
<i>S</i> _{<i>h</i>2}	-17,832	1,345	
S _{ch4}	-16, 993	1,412	
S _{ic}	-16, 924	1,418	
X _{pr}	-10, 050	2,388	
X _{li}	-10, 050	2,388	
X _{ch}	-10, 049	2,388	
X _{h2}	-7,002	3, 427	
S:- B. Cherki - F. Eicara - I	-3 636	⁻ 6 600 ⁻	4

Sonia Hassam - B. Cherki - E. Ficara - J. Harmand

Reduction of the ADM1 model

æ

Simplification of the slow dynamics of the ADM1 model Expression of the reduced model

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

State variables	Eigenvalues (1/d)	$\tau(h)$
X _c	-0, 552	43, 456
X _{aa}	-0, 070	341,491
X _{fa}	-0, 070	342, 514
X _{c4}	-0, 070	342, 514
X _{pro}	-0, 069	342,906
X _{su}	-0, 068	352, 319
S _{fa}	-0, 050	480,000
X _{ac}	-0, 045	527, 588

Table 3 - Eigenvalue and time constant association

Simplification of the slow dynamics of the ADM1 model Expression of the reduced model

• The differential system is reduced to 14 differential equations represented by the following state variables: S_{su} , S_{aa} , S_{va} , S_{bu} , S_{pro} , S_{ac} , S_{h2} , S_{ch4} , S_{ic} , S_{in} , X_{ch} , X_{pr} , X_{li} , X_{h2} other variables being considered as constants.

Simplification of the slow dynamics of the ADM1 model Expression of the reduced model

A⊒ ▶ ∢ ∃ ▶

- The differential system is reduced to 14 differential equations represented by the following state variables: S_{su} , S_{aa} , S_{va} , S_{bu} , S_{pro} , S_{ac} , S_{h2} , S_{ch4} , S_{ic} , S_{in} , X_{ch} , X_{pr} , X_{li} , X_{h2} other variables being considered as constants.
- The reduced model keeps the particulate components X_{ch}, X_{pr}, X_{li} which are the most important particulate substrates identified by the ADM1 model (Batstone et al., 2002).

Comparison between the ADM1 and the reduced model Robustness of the reduced model with respect to input disturbance

The case study

 A CSTR anaerobic digester fed on waste activated sludge operating under mesophilic temperature.

Comparison between the ADM1 and the reduced model Robustness of the reduced model with respect to input disturbance

The case study

- A CSTR anaerobic digester fed on waste activated sludge operating under mesophilic temperature.
- Simulations were performed by using DYMOLA (DYnamic MOdeling LAboratory) to compare the values assumed by the state variables at steady state as predicted by the ADM1 model and by the reduced model

Comparison between the ADM1 and the reduced model Robustness of the reduced model with respect to input disturbance

Simulation results

ADM1 Model	Reduced Model	Relative error (%)
0,011	0,019	72,72
0,0053	0,0050	5,66
0,011	0,009	18,18
0,0132	0,0136	3,03
0,0157	0,0152	3,18
0,197	0,024	87,81
2,359e-7	2,277e-7	3,48
0,0549	0,0544	0,91
0,152	0,147	3,28
0,130	0,122	6,15
0,027	0,024	11,11
	0,011 0,0053 0,011 0,0132 0,0157 0,197 2,359e-7 0,0549 0,152 0,130	0,011 0,019 0,0053 0,0050 0,011 0,009 0,0132 0,0136 0,0157 0,0152 0,197 0,024 2,359e-7 2,277e-7 0,0549 0,0544 0,152 0,147 0,130 0,122

Sonia Hassam - B. Cherki - E. Ficara - J. Harmand

Reduction of the ADM1 model

Comparison between the ADM1 and the reduced model Robustness of the reduced model with respect to input disturbance

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

State variables	ADM1 Model	Reduced Model	Relative error (%)
Xpr	0,102	0,099	2,94
Xli	0,029	0,024	17,24
Xh2	0,317	0,296	6,62

Table 4 - Steady state values reached by the two models

State variables	ADM1 Model	Reduced Model	Relative error (%)
Sgas CH ₄	1,621	1,618	0,18
Sgas CO ₂	0,014	0,014	0
q gas CH ₄	1709,300	1596,040	6,63
q gas CO ₂	952,399	885,347	7,04

Table 5 - Steady state values for CH_4 , CO_2 and their flow rate

٠

Comparison between the ADM1 and the reduced model Robustness of the reduced model with respect to input disturbance

A disturbance around the steady state conditions

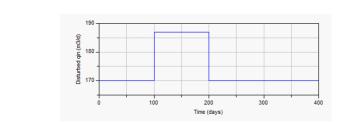
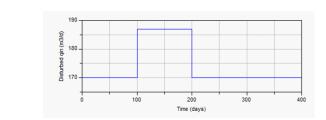
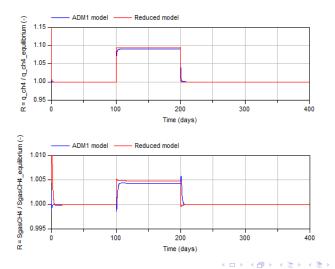


Figure 2 - Step disturbance applied to qin

Comparison between the ADM1 and the reduced model Robustness of the reduced model with respect to input disturbance

A disturbance around the steady state conditions




Figure 2 - Step disturbance applied to qin

• A-dimensional ratio R:

٥

$$R_{\text{state variable}} = \frac{\text{State variable }(t)}{\text{State variable }(eq)}$$

Comparison between the ADM1 and the reduced model Robustness of the reduced model with respect to input disturbance

Sonia Hassam - B. Cherki - E. Ficara - J. Harmand Reduc

Reduction of the ADM1 model

э

Sensitivity to the parameters

 The ADM1 model presents a significant sensitivity to some model parameters: k_{m,ac}, K_{S,ac}

.⊒ . ►

A D

Sensitivity to the parameters

- The ADM1 model presents a significant sensitivity to some model parameters: k_{m,ac}, K_{S,ac}
- Evaluate the sensitivity of the states of the reduced model with respect to 16 parameters

Sensitivity to the parameters

- The ADM1 model presents a significant sensitivity to some model parameters: k_{m,ac}, K_{S,ac}
- Evaluate the sensitivity of the states of the reduced model with respect to 16 parameters
- Index of sensitivity as proposed by Dochain and Vanrolleghem (2001):

Sensitivity to the parameters

۵

- The ADM1 model presents a significant sensitivity to some model parameters: k_{m,ac}, K_{S,ac}
- Evaluate the sensitivity of the states of the reduced model with respect to 16 parameters
- Index of sensitivity as proposed by Dochain and Vanrolleghem (2001):

$$\delta_{ij} = rac{p_i}{y_j(p_i)}.rac{y_j(p_i + \Delta p_i) - y_j(p_i)}{\Delta p_i}.100$$

Sensitivity to the parameters

- The ADM1 model presents a significant sensitivity to some model parameters: k_{m,ac}, K_{S,ac}
- Evaluate the sensitivity of the states of the reduced model with respect to 16 parameters
- Index of sensitivity as proposed by Dochain and Vanrolleghem (2001):

$$\delta_{ij} = rac{oldsymbol{p}_i}{oldsymbol{y}_j(oldsymbol{p}_i)}.rac{oldsymbol{y}_j(oldsymbol{p}_i+\Deltaoldsymbol{p}_i)-oldsymbol{y}_j(oldsymbol{p}_i)}{\Deltaoldsymbol{p}_i}.100$$

• For each parameter p_i an absolute variation of 20% of the default value was applied

	k _{hyd,ch}	k _{hyd,pr}	k _{hyd,li}	k _{dec,Xh2}	k _{m,su}	K _{s,su}	k _{m,aa}	K _{s,aa}	k _{m,c4}	$K_{s,c4}$	k _{m,pro}	K _{s,pro}	k _{m,ac}	K _{s,ac}	k _{m,h2}	K _{s,hi}
Ssu	1		1		3	3										
Ssu_red	1		1		3	3										
Saa		1					3	3								
Saa_red		1					3	3								
Sva							1	1	3	3						
Sva_red							1	1	3	3						
Sbu					1	1	1	1	3	3						
Sbu_red					1	1	1	1	3	3						
Spro					1	1	1	1	1	1	3	3				
Spro_red					1	1	1	1	1	1	3	3				
Sac					1	1	1	1	1	1	1	1	3	3		
Sac_red					1	1	1	1	1	1	1	1	3	3		-
Sh2					1	1	1	1	1	1	1	1			3	3
Sh2_red					1	1	1	1	1	1	1	1			3	3
Sch4					-								1	1	1	1
Sch4_red													1	1	1	1
Sic	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Sic_red	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Sin				1	1	1	1	1	1	1	1	1	1	1	1	1
Sin_red				1	1	1	1	1	1	1	1	1	1	1	1	1
Xch	3															
Xch_red	3															
Xpr		3														
Xpr_red		3														
Xli			3													
Xli_red			3	1	1											
Xh2				2	-										1	1
Xh2_red			-	2	-		1	<u> </u>		1		-			1	1

Table 4 - Results of the sensitivity study

< 注入 < 注入

æ

Simulation results

• $1 = \delta_{ij} < 30\%$

Sonia Hassam - B. Cherki - E. Ficara - J. Harmand Reduction of the ADM1 model

э

Simulation results

•
$$1 = \delta_{ij} < 30\%$$

• $2 = 30\% \le \delta_{ij} \le 60\%$

Sonia Hassam - B. Cherki - E. Ficara - J. Harmand Reduction of the ADM1 model

э

< 1 →

A B M A B M

Simulation results

•
$$1 = \delta_{ij} < 30\%$$

•
$$2 = 30\% \le \delta_{ij} \le 60\%$$

•
$$3 = \delta_{ij} > 60\%$$

<ロ> <同> <同> < 同> < 同>

æ

Simulation results

- $1 = \delta_{ij} < 30\%$
- $2 = 30\% \le \delta_{ij} \le 60\%$
- $3 = \delta_{ij} > 60\%$
- The sensitivities of the states with regard to the parameters are preserved in the reduced model

• We have implemented the Homotopy method for the reduction of the order of the ADM1 model

< 同 ▶

-

-

э

۵

• We have implemented the Homotopy method for the reduction of the order of the ADM1 model

	ADM1 Model	Reduced Model
State variables	24	14
Biomasses	7	1
Parameters	55	40

< 同 ▶

э

э

• Simulations show that the reduced model is very efficient in tracking the dynamic response of the system to a disturbance in the influent flow rate

-

- Simulations show that the reduced model is very efficient in tracking the dynamic response of the system to a disturbance in the influent flow rate
- Sensitivity study proves the similarity and the strong connection between the ADM1 and the reduced model

- Simulations show that the reduced model is very efficient in tracking the dynamic response of the system to a disturbance in the influent flow rate
- Sensitivity study proves the similarity and the strong connection between the ADM1 and the reduced model
- To use the reduced model for control synthesis and apply this controller to the ADM1 model

THANK YOU!

æ

<ロト <部ト < 注ト < 注ト

Sonia Hassam - B. Cherki - E. Ficara - J. Harmand Reduction of the ADM1 model