

L'ECOLE CHERCHEURS "BIOTECHNOLOGIES POUR LE TRAITEMENT DE L'EAU ET DES DECHETS"

HYDRODYNAMIQUE ET MÉLANGE DANS LES BIORÉACTEURS

RENAUD ESCUDIÉ

LBE – INRA, NARBONNE

ALIMENTATION AGRICULTURE ENVIRONNEMENT

Bioréacteurs de traitement des effluents liquides

Enjeux technologiques

Optimisation des capacités d'épuration des procédés

 \Rightarrow réduction des volumes d'installation et/ou augmentation de la charge polluante

♥ cinétique de dégradation (adaptation des conditions environnementales)

 \clubsuit concentration en biomasse

Stratégie

Effluents liquides: découplage entre TSH et TSB

Technologies pour les effluents liquides

Réacteurs à biomasses libres

micro-organismes ⇔ forme planctonique / flocs stratégies de concentration: décantation externe, décantation interne (SBR)...

✤ Bioréacteurs agités mécaniquement ou par incorporation de gaz

Réacteurs à biomasses fixées (intensifs)

micro-organismes ⇔ biofilm stratégies de concentration: support inerte pour le développement de la matrice biologique

✤ lits fixes, lits fluidisés

Procédés à lit fixe

- Rétention de biomasse
- Facilité de mise en œuvre
- Fortes charges : 20 Kgpco.m⁻³.j⁻¹
- S Colmatage

Procédés à lit mobile

- Évite les problèmes de colmatage
- ➢ Surface spécifique du biofilm élevée ⇒ Favorise les transferts de matière
 - ⇒ Augmente la capacité de conversion volumique des réacteurs
 - ⇒ Réacteurs compacts (faible encombrement)
 - \Rightarrow Très fortes charges > 40 KgDCO.m⁻³.j⁻¹ (Buffière *et al.* 1996, Steyer *et al.* 1999)

Echelle Globale

Macromélange:

homogénéisation globale des composés dissous dispersion des aggrégats transfert de chaleur

Mésomélange/Micromélange structure des petites échelles turbulentes

Dissipation de l'énergie cinétique turbulente

phénomène d'aggrégation et de rupture des flocs taille des inclusions liquides (kla)

Echelle locale

1- Modélisation du mélange et des cinétiques biologiques d'un lit fixe anaérobie

2- Utilisation de l'hydrodynamique pour faciliter le démarrage d'un lit fluidisé anaérobie

1- Modélisation du mélange et des cinétiques biologiques d'un lit fixe anaérobie

2- Utilisation de l'hydrodynamique pour faciliter le démarrage d'un lit fluidisé anaérobie

Mise en service du pilote en 1997

- Volume utile du réacteur: 948 litres
- Utilisation de support de type Cloisonyle (tubes multicanaux)

25 tubes de 3,5 m

Etat de la colonisation en 2002 ???

Objectifs

- Caractérisation du mélange liquide et influence des conditions opératoires
- Développement d'un modèle du bioréacteur

Distribution du Temps de Séjour Hydraulique (DTS)

mesure les temps de séjour pour l'ensemble des molécules qui entre dans le réacteur => caractériser l'écoulement (le macromélange)

Mise en œuvre

Choix du traceur

- -Composé dissous inerte (réaction, inhibition)
- -Facilement détectable

J réacteurs parfaitement mélangé en série

$$E(t) = \frac{J}{(J-1)!} (J \cdot t)^{J-1} e^{(-J \cdot t)!}$$

Protocole

- alimentation du réacteur avec des vinasses
- utilisation du CILi comme traceur (pas de réaction avec la biomasse)
- prélèvement à partir d'échantillonneur automatique
- Centrifugation des solutions à 15000t/min pd 10 min
- dosage avec le photomètre à flamme

Durée de la manipulation > 8 τ

Experiments	Exp 1	Exp 2	Exp 3	Exp 4	Exp 5	Exp 6	Exp 7
Inlet Flow	48	48	46	27	15	13	13
l/h							
Recycling flow	111	0	129	0	86	0	0
l/h							
Mixing pump	On	Off	Off	Off	On	Off	Off
Ultra-fitration	On	Off	Off	Off	On	Off	Off
pump							
Biogas flow	220	194	223	177	115	0	77
l/h							

- pas d'influence de la recirculation, de la pompe de mélange et d'UF
- bon mélange du liquide

apparition d'une « traîné » dans la courbe <=> zone morte
 transfert biofilm

Influence du débit d'alimentation

Rôle moteur de la génération du biogaz sur le mélange

Objectif

- développer un modèle simple utilisable dans un modélisation biocinétique du réacteur

- un modèle unique pour toutes les conditions opératoires

Observations expérimentales

- bon mélange
- zone morte <=> biofilm

 \Rightarrow deux réacteurs interconnectés

Colmatage du réacteur

⇒Estimation du volume de liquide « disponible »

- volume de biomasse (ouverture du réacteur): $V_L = 230 I$
- vidange du liquide réacteur: $V_L = 221 I$
- remplissage du réacteur: $V_L = 220 I$

Objectif

 modèle biocinétique du lit fixe anaérobie tenant compte de l'hydrodynamique du réacteur

Formalisme: modèle AMOCO (bernard et al., 2001)

- réactions biologiques Acidogenèse: $k_1S_1 \xrightarrow{r_1=\mu_1X_1} X_1 + k_2S_2 + k_4CO_2$ Methanogenèse: $k_3S_2 \xrightarrow{r_2=\mu_2X_2} X_2 + k_5CO_2 + k_6CH_4$ $S_1: DCO, S_2:AGV$
- équilibre chimique

Carbone inorganique: C Alcalinité totale: K

- production de gaz: CO₂, CH₄

Condition de mélange:

- hydrodynamique prise en compte

Les paramètres du modèle

- paramètres cinétiques \approx AMOCO
- X₁ et X₂ de l'ordre du 100 g/l

Etude hydrodynamique expérimentale

- bon mélange dans le lit fixe (présence du biogaz)
- pas d'influence de la recirculation et de la pompe mélange
 intérêt dans le cas d'application industrielle

Modélisation du mélange liquide

- 2 réacteurs interconnectés (liquide + biofilm)
- 3 paramètres hydrodynamiques: V_1 , V_2 , Q_2

Modèle biocinétique du réacteur

- intérêt de la prise en compte du mélange

1- Modélisation du mélange et des cinétiques biologiques d'un lit fixe anaérobie

2- Utilisation de l'hydrodynamique pour faciliter le démarrage d'un lit fluidisé anaérobie

Contexte

Démarrage: opération longue et délicate

(Henze et al. 1983; Weiland et al. 1991; Puñal et al.; Nicolella et al. 2000...)

Objectifs

Utiliser les conditions hydrodynamiques

⇒ Impact de l'abrasion ⇒ Impact du TSH

Doctorat R. Cresson (2002-2006)

Lit Turbulé Inverse

Réacteur triphasique

- Fluidisation par le gaz
- Support de faible densité
- A Bon mélange
- Contrôle de la hauteur du lit
- Décanteur intégré : récupération des solides sédimentés
- Fortes contraintes hydrodynamiques (évite la sur-accumulation de biomasse)

Effet de l'abrasion sur le démarrage

Impact de l'hydrodynamique sur la formation du biofilm

Démarrage 2 LTI : 2 Vitesses de recirculation du biogaz testées

- Faibles contraintes : Ug $_1 = 1$ mm.s⁻¹ = vitesse minimale de fluidisation
- Fortes contraintes Ug $_2 = 10 \text{ mm.s}^{-1} = \text{vitesse max régime homogène}$

Ajustement des contraintes hydrodynamiques appliquées

Contrôle actif de l'accumulation de la biomasse sur le support

Biofilm installé dans les deux systèmes

 \Rightarrow Égalisation des vitesses : Ug ₁ = Ug ₂ = 7 mm.s⁻¹

Conditions de démarrage

Inoculation massive, mode discontinu : 24h

Alimentation en continu

- TSH = 1 jour
- Taux de dilution > taux de croissance des microorganismes

Montée en charge

Par paliers avec un taux d'épuration seuil fixé à 80%

Réacteur fortes contraintes : 0,5 à 6 gDCO.L⁻¹.j⁻¹ en 72 jours Réacteur faibles contraintes : 0,5 à 6 gDCO.L⁻¹.j⁻¹ en 64 jours

Développement du biofilm

Abrasion et démarrage des réacteurs de méthanisation

Abrasion et démarrage des réacteurs de méthanisation

Variation de la vitesse de gaz

Abrasion et démarrage des réacteurs de méthanisation

Faibles contraintes hydrodynamiques :

⇒ Démarrage plus rapide, croissance du biofilm plus importante

Fortes contraintes :

⇒ Activités spécifiques du biofilm élevées :

3,5 g DCO dégradée / g Biofilm vs 1.8 g DCO dégradée / g Biofilm

Problématique du démarrage des réacteurs de digestion anaérobie :

Minimiser les contraintes hydrodynamiques

Égalisation des vitesses de gaz

- ⇒ Augmentation de la vitesse ⇒ pas de détachement massif du biofilm
- ⇒ Diminution de la vitesse ⇒ augmentation de la vitesse de croissance

A Ug égales les taux de détachement et accumulation sont équivalents

Une fois le biofilm installé :

Variation de la vitesse de gaz ⇒ régulation de l'épaisseur du biofilm

Deux compartiments distincts

Conditions de démarrage

-Montée en charge de type exponentielle de 0 à 20g_{DCO}.L⁻¹.j⁻¹ en 30 jours

2 stratégies:

Lessivage rapide des microorganismes

- ⇒ TSH constant et court (1j)
- ⇒ Augmentation de la charge par augmentation de la concentration en entrée

Lessivage progressif des microorganismes

- \Rightarrow TSH variable(40j \Rightarrow 1j)
- ⇒ Augmentation de la charge par diminution du débit d'alimentation

Lbe TSH et démarrage des réacteurs de méthanisation

TSH et démarrage des réacteurs de méthanisation

Lbe

TSH et démarrage des réacteurs de méthanisation

Lbe

INRA

Lbe TSH et démarrage des réacteurs de méthanisation

INRA

TSH et démarrage des réacteurs de méthanisation

Performances épuratoires

- Objectif atteint avec les deux stratégies
- Lessivage rapide : meilleures performances
 - ⇒ + 17% DCO éliminée, + 19% de méthane produit
- Production et accumulation d'AGV
 - Conversion éthanol / AGV : 7 % lessivage rapide vs 13% lessivage progressif
 - ⇒ Lessivage progressif : forte accumulation d'AGV à la fin de la montée en charge (2,5g.L⁻¹ vs 0,3 g.L⁻¹ lessivage rapide)

Formation du biofilm

- Lessivage rapide : forte croissance du biofilm
 - ⇒ 4,5 x plus de biomasse à la fin de la montée en charge (44 jours)

TSH court ⇒Favorise le développement du biofilm

Stratégie lessivage rapide validée sur un lit fixe de 1m³

Hydrodynamique

Étape clef pour la mise en œuvre et l'optimisation des bioprocédés de traitement des effluents liquides

Réacteurs à lit fixe

Pb de colmatage => pb de macromélange => performance de dégradation

Réacteurs à lit mobile

Hydrodynamique (abrasion, TSH): paramètre opératoire pour optimiser la phase de

démarrage de réacteurs anaérobie

L'ECOLE CHERCHEURS "BIOTECHNOLOGIES POUR LE TRAITEMENT DE L'EAU ET DES DECHETS"

HYDRODYNAMIQUE ET MÉLANGE DANS LES BIORÉACTEURS

RENAUD ESCUDIÉ

LBE – INRA, NARBONNE

ALIMENTATION AGRICULTURE ENVIRONNEMENT

