Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal

Home page

The SwITCh project

Simulating the transition of transport Infrastructures Toward smart and sustainable Cities

Participatory modelling as a tool to help planners and decision-makers adapt infrastructure to future needs and accelerate the transition to a more sustainable city.

Reinventing mobility to imagine the city of tomorrow

Transport infrastructures play a large part in defining the city of the future, which should be smart, sustainable and resilient. Their management will need to deal with the emergence of novel technologies (i.e. autonomous cars, Internet of Things), the apparition of novel modalities (hoverboard, etc), and changes of practices (increase of multi-modality, electric bicycles, shared cars). These aspects could favour and accelerate the transition to the city of the future with positive social, environmental and economic impacts, in order to address foreseen trends (climate change and new requirements in terms of pollution, security, and global costs).

The SwITCh project seek to integrate a large variety of urban transport modalities (private car, walk, tramway, bicycle, etc.) and associated infrastructures (pavement, tram track, bicycle path, etc.). It aims to support decision-making for urban planning by simulating the gradual introduction of disruptive innovations on technology, usage and behaviour of infrastructures. Achieving such an objective requires providing a model that is able to assess the impact of these innovations on several key indicators related to mobility, user satisfaction and security, economic costs, and air pollution. It requires a holistic vision of urban transport to avoid indirect consequences of choices or rebound effect (e.g. a solution improving air pollution but reducing security). The model must include current and future infrastructures and modalities, and consider the transition process between current and future situations. We do not provide an a priori list of potential innovations; some of them are already considered (e.g. autonomous car, smart infrastructures, car sharing, etc.), but others will appear from the WP1. Being able to consider a large variety of disruptive innovations and indicators requires a high flexibility of the model; this issue will be at the centre of the modelling process.

A method combining Artificial Intelligence and a participatory approach

SwITCh uses agent-based modelling (ABM) and participative simulation as a unifying framework that allows coupling different models and taking into account both temporal and spatial scales in order to build a holistic model. It will include a city model based on real geographic data (GIS) and a complex realistic model of population behaviour. The model will be designed as a support tool for helping stakeholders (i.e. decision-makers, managers, technicians, urban planners, citizens) to enrich their reflection and build a shared project to improve transport infrastructures to meet the challenges of future cities.

This model will integrate an agent-based model (ABM) of citizens’ mobility based on their activities, available transport modalities and available information, and will consider infrastructure and vehicles as autonomous cognitive agents. The model will be implemented with the GAMA open-source platform. Experiments using the model will be conducted in a real context for two case studies, with the active involvement of two cities: Bordeaux Metropole (urban agency A’Urba) and Dijon Metropole. This participatory modelling approach will raise questions and support reflection on the potential future for the cities. The use of Agile methods to drive the project and ComMod (companion modelling) for participatory modelling and simulation will create lively exchanges inside the consortium, especially between the partner cities and researchers, thus directly addressing the cities’ questions and also opening innovative options to the cities. One of the crucial aspects of the project is to involve all the stakeholders, from the citizens to the policy makers and technical services, in the urban planning process. Thus, the model will be designed as a support tool for consultation and discussion. The ambition of the project is not to produce a simulator that can predict what will happen and to solve all the problems; this is obviously impossible. But, it aims at helping stakeholders to enrich their reflection and build a shared project to improve transport infrastructures in order to meet the challenges of future cities.

Expected results

The SwITCh project will deliver several main results. Firstly, it will generate and formalise knowledge on future transport infrastructures. Secondly, the project will result in a simulation tool that could have significant socio-economic impacts: by helping infrastructure managers and urban planners, as a reflection support, to adapt infrastructures to future needs, by accelerating the transition to a more sustainable city which should have positive environmental (e.g. air pollution, global warming), economical (e.g. maintenance cost, commercial appeal) and social (e.g. traffic, living environment) impacts. The model will be flexible, easily adaptable to any city, and able to integrate a wide variety of prospective and disruptive scenarios.