Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal

Home page

SwITCh - Simulating the transition of transport Infrastructures Toward smart and sustainable Cities

Participatory modelling as a tool to help planners and decision-makers adapt infrastructure to future needs and accelerate the transition to a more sustainable city.

Project founded by Agence National de la Recherche (ANR) on Appel à projet Générique (AAPG) 2019 - CE 22: Sustainable mobility and urban systems

Founded for: 2020-2023

Amount of aid granted by ANR: 492 k€

Abstract :

Transport infrastructures play a large part in defining the city of the future, which should be smart, sustainable and resilient. Their management will need to deal with the emergence of novel technologies (i.e. autonomous cars, Internet of Things), the apparition of novel modalities (hoverboard, etc), and changes of practices (increase of multi-modality, electric bicycles, shared cars). These aspects could favour and accelerate the transition to the city of the future with positive social, environmental and economic impacts, in order to address foreseen trends (climate change and new requirements in terms of pollution, security, and global costs).

The SwITCh project seek to integrate a large variety of urban transport modalities (private car, walk, tramway, bicycle, etc.) and associated infrastructures (pavement, tram track, bicycle path, etc.). It aims to support decision-making for urban planning by simulating the gradual introduction of disruptive innovations on technology, usage and behaviour of infrastructures. Achieving such an objective requires providing a model that is able to assess the impact of these innovations on several key indicators related to mobility, user satisfaction and security, economic costs, and air pollution. It requires a holistic vision of urban transport to avoid indirect consequences of choices or rebound effect (e.g. a solution improving air pollution but reducing security). The model must include current and future infrastructures and modalities, and consider the transition process between current and future situations. We do not provide an a priori list of potential innovations; some of them are already considered (e.g. autonomous car, smart infrastructures, car sharing, etc.), but others will appear from the WP1. Being able to consider a large variety of disruptive innovations and indicators requires a high flexibility of the model; this issue will be at the centre of the modelling process.