Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Institutions

SPS - Saclay Plant Sciences

Andrea Rau

Chargée de recherche / Research scientist

Andrea Rau
Co-expression analysis by mixture models

Main research interests

RNA-seq analysis, gene network inference, mixture models, integrative data analysis

Selection of 3 major recent publications

Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux, G. (2015) Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics, 31(9): 1420-1427. 

Rau, A., Marot, G. and Jaffrézic, F. (2014) Differential meta-analysis of RNA-seq data from multiple studies. BMC Bioinformatics, 15:91.

Rau, A., Gallopin, M., Celeux, G., and Jaffrézic, F. (2013). Data-based filtering for replicated high-throughput transcriptome sequencing experiments. Bioinformatics 29(17): 2146-2152.


Andrea Rau is a research scientist at the French National Institute for Agronomical Research (INRA) in the Animal Genetics and Integrative Biology research unit (Populations, Statistics, and Genome team). She received her Ph.D. in 2010 from Purdue University (West Lafayette, Indiana, USA) for the development of statistical methods to infer gene regulatory networks from time-course microarray data. Following this, she did a one-year post-doctoral fellowship in the Model Selection and Statistical Learning (Select) team at Inria Saclay -- Île-de-France, with a focus on clustering RNA-seq data to identify groups of co-expressed genes. She was recruited as a researcher at INRA in the Animal Genetics department in 2011.  

Dr. Rau's research interests focus on the development of appropriate statistical methodology for the analysis of high-dimensional genomic and transcriptomic data, and the implementation of these methods in open-source software packages. She is an active user and developer of the R programming language, and has developed or co-developed six R packages. Today, her work centers on the inference of causal regulatory networks from gene knock-out and knock-down experiments, as well as differential and co-expression analyses of RNA-seq data. Since 2014, she has been a work-package leader in the French National Research Agency (ANR) grant MixStatSeq, which seeks to develop mixture-based procedures for the statistical analysis of RNA-seq data.

Since 2011, Dr. Rau has worked in close collaboration with biologists on interdisciplinary problems at the interface of statistics and biology. She enjoys training students, and has taught courses on the statistical analysis of 'omics data at a variety of levels, from Master's level students to fellow researchers. She is also an active participant in the Statomique consortium, which gathers together more than 40 statisticians and bioinformaticians involved in high-throughput 'omics data analysis in France.


GABI, INRA, AgroParisTech
Université Paris Saclay
78350 Jouy en Josas
Tel: + 33(0)

Génétique Animale et Biologie Intégrative