Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Institutions

SPS - Saclay Plant Sciences

Recent highlights

2nd semester 2017

Bazin J., Baerenfaller K., Gosai S.J., Gregory B.D., Crespi M., Bailey-Serres J. (2017). Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation. Proceedings of the National Academy of Sciences of the United States of America 114(46): E10018-E10027.

Bollier N., Sicard A., Leblond-Castaing J., latrasse D., Gonzalez N., Gévaudant F., Benhamed M., Raynaud C., Lenhard M., Chevalier C., Hernould M., Delmas F. (2018). At-MINI ZINC FINGER2 and Sl-INHIBITOR OF MERISTEM ACTIVITY, a Conserved Missing Link in the Regulation of Floral Meristem Termination in Arabidopsis and Tomato. The Plant Cell DOI:

Charbonnel C., Niazi A.K., Elvira-Matelot E., Nowak E., Zytnicki M., de Bures A., Jobet E., Opsomer A., Shamandi N., Nowotny M., Carapito C., Reichheld J.P., Vaucheret H., Saez-Vasquez J. (2017). The siRNA suppressor RTL1 is redox-regulated through glutathionylation of a conserved cysteine in the double-stranded-RNA-binding domain. Nucleic Acids Research 45(20): 11891-11907.

Cheng S., Tan F., Lu Y., Liu X., Li T., Yuan W., Zhao Y., Zhou D.X. (2018). WOX11 recruits a histone H3K27me3 demethylase to promote gene expression during shoot development in rice. Nucleic Acids Research doi: 10.1093/nar/gky017.

Duc C., Benoit M., Detourne G., Simon L., Poulet A., Jung M., Veluchamy A., Latrasse D., Le Goff S., Cotterell S., Tatout C., Benhamed M., Probst A.V. (2017). Arabidopsis ATRX Modulates H3.3 Occupancy and Fine-Tunes Gene Expression. Plant Cell 29(7): 1773-+.

Eisenach C., Baetz U., Huck N.V., Zhang J., De Angeli A., Beckers G.J.M., Martinoia E. (2017). ABA-Induced Stomatal Closure Involves ALMT4, a Phosphorylation-Dependent Vacuolar Anion Channel of Arabidopsis. Plant Cell 29(10): 2552-2569.

Fernandes J.B., Seguéla-Arnaud M., Larchevêque C., Lloyd A.H., Mercier R. (2017). Unleashing meiotic crossovers in hybrid plants. Proceedings of the National Academy of Sciences of the United States of America doi:

Grantham N.J., Wurman-Rodrich J., Terrett O.M., Lyczakowski J.J., Stott K., Iuga D., Simmons T.J., Durand-Tardif M., Brown S.P., Dupree R., Busse-Wicher M., Dupree P. (2017). An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nature Plants 3(11): 859-865.

Jegu T., Veluchamy A., Ramirez-Prado J.S., Rizzi-Paillet C., Perez M., Lhomme A., Latrasse D., Coleno E., Vicaire S., Legras S., Jost B., Rougee M., Barneche F., Bergounioux C., Crespi M., Mahfouz M.M., Hirt H., Raynaud C., Benhamed M. (2017). The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility. Genome Biology 18: 114.

Ligerot Y., de Saint Germain A., Waldie T., Troadec C., Citerne S., Kadakia N., Pillot J.P., Prigge M., Aubert G., Bendahmane A., Leyser O., Estelle M., Debelle F., Rameau C. (2017). The pea branching RMS2 gene encodes the PsAFB4/5 auxin receptor and is involved in an auxin-strigolactone regulation loop. Plos Genetics

Martins S., Montiel-Jorda A., Cayrel A., Huguet S., Paysant-Le Roux C., Ljung K., Vert G. (2017). Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nature Communications 8(1): 309.

Milcu A., Puga-Freitas R., Ellison A.M., Blouin M., Scheu S., Freschet G.T., Rose L., Barot S., Cesarz S., Eisenhauer N., Girin T., Assandri D., Bonkowski M., Buchmann N., Butenschoen O., Devidal S., Gleixner G., Gessler A., Gigon A., Greiner A., Grignani C., Hansart A., Kayler Z., Lange M., Lata J.C., Le Galliard J.F., Lukac M., Mannerheim N., Muller M.E.H., Pando A., Rotter P., Scherer-Lorenzen M., Seyhun R., Urban-Mead K., Weigelt A., Zavattaro L., Roy J. (2018). Genotypic variability enhances the reproducibility of an ecological study. Nature Ecology & Evolution 2: 279–287.

Querard J., Zhang R.K., Kelemen Z., Plamont M.A., Xie X.J., Chouket R., Roemgens I., Korepina Y., Albright S., Ipendey E., Volovitch M., Sladitschek H.L., Neveu P., Gissot L., Gautier A., Faure J.D., Croquette V., Le Saux T., Jullien L. (2017). Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations. Nature Communications 8: 969.

Tran D., Galletti R., Neumann E.D., Dubois A., Sharif-Naeini R., Geitmann A., Frachisse J.M., Hamant O., Ingram G.C. (2017). A mechanosensitive Ca2+ channel activity is dependent on the developmental regulator DEK1. Nature Communications 8: 1009.

Zhang H., Zhao Y., Zhou D.X. (2017). Rice NAD(+)-dependent histone deacetylase OsSRT1 represses glycolysis and regulates the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes. Nucleic Acids Research 45(21): 12241-12255.