Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Institutions

SPS - Saclay Plant Sciences


Multiplied CRISPR/Cas9 targets


- Raphaël MERCIER, Meiosis mechanisms and apomixis (Meiosis), IJPB-INRA
- Abdelhafid BENDAHMANE, Flower and Carpel Development (FCD) / Platform of Translational Research (TransRes), IPS2-INRA
- Oumaya BOUCHABKE-COUSSA, Biology of the Cell and Regeneration (BCR), IJPB-INRA

Abstract of the project

Genetic redundancy is a strong impediment to basic research and plant breeding. Recent technical breakthroughs offer solutions to overcome this major hurdle. With the MultiCrisp project, plant scientists will develop methods for the simultaneous mutation of multiple genes at once, based on the CRISPR/Cas9 genome editing technology. Their goals are to enable the functional analysis of highly redundant plant gene families and to create valuable agronomical traits in crops. The MultiCrisp project includes three topics.

(1) Dissecting the mechanisms that drive the division cycle in plant cells. The cell cycle includes successive phases triggered by molecular switches turned off or on by proteins called cyclins. Unlike animals, plants have dozens of cyclins that seem to have similar roles, although their individual function remains elusive because of their redundancy. The researchers will create a collection of multiple cyclin mutant lines in the model plant Arabidopsis thaliana to reveal how each of them specifically controls growth, development and reproduction.

(2) Shaping tomato plants with many fruits. The number of fruits per plant is a major component of yield controlled by the structure of the inflorescence and the fraction of flowers that form a fruit. Key genes affecting these traits have been identified in tomato and will be associated to identify the most interesting combinations improving fruit harvest.

(3) Enhancing recombination to accelerate wheat breeding. The crossover of chromosome fragments during meiosis is the basis of breeding. The frequency of such events can be enhanced genetically. But this strategy is difficult to implement in species with multiple genomes such as the hexaploid bread wheat. Towards that goal, wheat lines that carry mutations in the multiple copies of genes controlling crossovers will be characterized in collaboration with geneticists from the INRA center in Clermont-Ferrand.