Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Institutions

SPS - Saclay Plant Sciences

Molecular and physiological basis of high photosynthetic efficiency for enhancing crop yield potential - Wenbin Zhou

June 20, 2023 - 3PM - Online

Wenbin Zhou
(Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China)

With the growing population in the worldwide, food security is still a global challenge. As the ultimate basis of yield, improving photosynthetic efficiency has been considered as one of the most promising strategies to enhance crop yield. Understanding the physiological and molecular basis of high photosynthesis efficiency is critical to achieve high yield in major crops. By comparing the photosynthetic characterization of high-yield maize varieties from 1970s to 2000s, we revealed that the high photosynthesis is the physiological basis of high yield throughout the variety evolution. Photosynthetic capacity of maize leaves locate at low and middle layers are the key determinates of yield. Moreover, we identified a key transcription factor OsDREB1C by screening the response of low-nitrogen and light status. OsDREB1C conferred substantial yield improvement up to 68.3% in rice, which was driven by enhance photosynthesis and nitrogen use efficiency. Importantly, OsDREB1C shortens the growth duration by promoting early flowering of rice up to 19 days. We further dissected the molecular mechanism that OsDREB1C coordinately regulate photosynthesis, nitrogen utilization and flowering, by activating multiple downstream target genes involved in those pathways. The conserved function of OsDREB1C in wheat and Arabidopsis suggested OsDREB1C can be a powerful tool to boost crop yield with less nitrogen cost.