En savoir plus

A propos des cookies

Qu’est-ce qu’un « cookie » ?

Un "cookie" est une suite d'informations, généralement de petite taille et identifié par un nom, qui peut être transmis à votre navigateur par un site web sur lequel vous vous connectez. Votre navigateur web le conservera pendant une certaine durée, et le renverra au serveur web chaque fois que vous vous y re-connecterez.

Différents types de cookies sont déposés sur les sites :

  • Cookies strictement nécessaires au bon fonctionnement du site
  • Cookies déposés par des sites tiers pour améliorer l’interactivité du site, pour collecter des statistiques

> En savoir plus sur les cookies et leur fonctionnement

Les différents types de cookies déposés sur ce site

Cookies strictement nécessaires au site pour fonctionner

Ces cookies permettent aux services principaux du site de fonctionner de manière optimale. Vous pouvez techniquement les bloquer en utilisant les paramètres de votre navigateur mais votre expérience sur le site risque d’être dégradée.

Par ailleurs, vous avez la possibilité de vous opposer à l’utilisation des traceurs de mesure d’audience strictement nécessaires au fonctionnement et aux opérations d’administration courante du site web dans la fenêtre de gestion des cookies accessible via le lien situé dans le pied de page du site.

Cookies techniques

Nom du cookie

Finalité

Durée de conservation

Cookies de sessions CAS et PHP

Identifiants de connexion, sécurisation de session

Session

Tarteaucitron

Sauvegarde vos choix en matière de consentement des cookies

12 mois

Cookies de mesure d’audience (AT Internet)

Nom du cookie

Finalité

Durée de conservation

atid

Tracer le parcours du visiteur afin d’établir les statistiques de visites.

13 mois

atuserid

Stocker l'ID anonyme du visiteur qui se lance dès la première visite du site

13 mois

atidvisitor

Recenser les numsites (identifiants unique d'un site) vus par le visiteur et stockage des identifiants du visiteur.

13 mois

À propos de l’outil de mesure d’audience AT Internet :

L’outil de mesure d’audience Analytics d’AT Internet est déployé sur ce site afin d’obtenir des informations sur la navigation des visiteurs et d’en améliorer l’usage.

L‘autorité française de protection des données (CNIL) a accordé une exemption au cookie Web Analytics d’AT Internet. Cet outil est ainsi dispensé du recueil du consentement de l’internaute en ce qui concerne le dépôt des cookies analytics. Cependant vous pouvez refuser le dépôt de ces cookies via le panneau de gestion des cookies.

À savoir :

  • Les données collectées ne sont pas recoupées avec d’autres traitements
  • Le cookie déposé sert uniquement à la production de statistiques anonymes
  • Le cookie ne permet pas de suivre la navigation de l’internaute sur d’autres sites.

Cookies tiers destinés à améliorer l’interactivité du site

Ce site s’appuie sur certains services fournis par des tiers qui permettent :

  • de proposer des contenus interactifs ;
  • d’améliorer la convivialité et de faciliter le partage de contenu sur les réseaux sociaux ;
  • de visionner directement sur notre site des vidéos et présentations animées ;
  • de protéger les entrées des formulaires contre les robots ;
  • de surveiller les performances du site.

Ces tiers collecteront et utiliseront vos données de navigation pour des finalités qui leur sont propres.

Accepter ou refuser les cookies : comment faire ?

Lorsque vous débutez votre navigation sur un site eZpublish, l’apparition du bandeau « cookies » vous permet d’accepter ou de refuser tous les cookies que nous utilisons. Ce bandeau s’affichera tant que vous n’aurez pas effectué de choix même si vous naviguez sur une autre page du site.

Vous pouvez modifier vos choix à tout moment en cliquant sur le lien « Gestion des cookies ».

Vous pouvez gérer ces cookies au niveau de votre navigateur. Voici les procédures à suivre :

Firefox ; Chrome ; Explorer ; Safari ; Opera

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de INRAE par email à cil-dpo@inrae.fr ou par courrier à :

INRAE
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2021

Menu Logo Principal AgroParisTech Université Paris Saclay

MIA Paris

Maud Delattre

Maître de Conférence

tel : 01 44 08 72 69
Maud.Delattre@agroparistech.fr
UMR518 AgroParisTech/INRA
Département MMIP
AgroParisTech
16 rue Claude Bernard
75 231 Paris Cedex 05

I am now a research scientist in statistics at INRAE, see my new webpage. 

Research Interests

  • Models: Mixed Models, Markov models and hidden Markov models, Stochastic Differential Equations, Segmentation models
  • Mathematic statistics: Asymptotic properties of estimators, Model selection
  • Computational statistics: stochastic algorithms (SAEM algorithm, MCMC algorithms), dynamic programming
  • Applications of interest: pharmacology, epidemiology, environment, genomics, plant breeding, agronomy

Publications (selected)

-> ProdINRA

-> Hal

  1. Delattre, M. and Poursat, M.A. (2020) An iterative algorithm for joint covariate and random effect selection in mixed effects models. The International Journal of Biostatistics (link)
  2. Delattre, M., Genon-Catalot, V. and Larédo, C. (2018) Approximate maximum likelihood estimation for stochastic differential equations with random effects in the drift and the diffusion. Metrika 81 (8) p. 953-983 (link)
  3. Delattre, M., Genon-Catalot, V. and Larédo, C. (2017) Parametric inference for discrete observations of diffusion processes with mixed effects. Stochastic Processes and their Applications 128(6) p. 1929-1957 (link)
  4. Brault, V., Delattre, M., Lebarbier, E., Mary-Huard, T. and Lévy-Leduc, C. (2017)  Estimating the number of change-points in a two-dimensional segmentation model without penalization. Scandinavian Journal of Statistics 44(2) p. 563-580 (link) 
  5. Colin, P., Delattre, M., Mancini, P. and Micallef, S. (2017) An Escalation for Bivariate Binary Endpoints Controlling the Risk of Overtoxicity (EBE-CRO): Managing Efficacy and Toxicity in Early Oncology Clinical Trials. Journal of Biopharmaceutical Statistics 17(6) p. 1-19 (link)
  6. Delattre, M., Genon-Catalot, V. and Samson, A. (2016) Mixtures of stochastic differential equations with random effects: Application to data clustering. Journal of Statistical Planning and Inference 173 p. 109-124 (link)
  7. Colin, P., Micallef, S., Delattre, M., Mancini, P. and Parent, E. (2015) Towards using a full spectrum of early clinical trial data: a retrospective analysis to compare potential longitudinal categorical models for molecular targeted therapies in oncology. Statistics in Medicine 34(22) p. 2999-3016 (link)
  8. Delattre, M., Genon-Catalot, V. and Samson, A. (2015) Estimation of population parameters in stochastic differential equations with random effects in the diffusion coefficient. ESAIM: Probability and Statistics 19 p. 671-688 (link)
  9. Lévy-Leduc, C., Delattre, M., Mary-Huard, T. and Robin, S. (2014) Two-dimensional segmentation for analyzing HiC data. Bioinformatics 30(17) p. 386-392 (link)
  10. Delattre, M., Lavielle, M. and Poursat, M.A. (2014) A note on BIC in mixed effects models. Electronic Journal of Statistics 8(1) p. 456-475 (link)
  11. Delattre, M. and Lavielle, M. (2013) Coupling the SAEM algorithm and the extended Kalman filter for maximum likelihood estimation in mixed-effects diffusion models. Statistics and Its Interface 6(4) p. 519-532 (link)
  12. Delattre, M., Genon-Catalot, V. and Samson, A. (2013) Maximum Likelihood Estimation for Stochastic Differential Equations with Random Effects. Scandinavian Journal of Statistics 40(2) p. 322-343 (link)
  13. Delattre, M., Savic, R.M., Miller, R., Karlsson, M.O. and Lavielle, M. (2012) Analysis of exposure-response of CI-945 in patients with epilepsy: application of novel mixed hidden Markov modelling methodology. Journal of Pharmacokinetics and Pharmacodynamics 39(3) p. 263-271 (link)
  14. Delattre, M. and Lavielle, M. (2012) Maximum Likelihood Estimation in Discrete Mixed Hidden Markov Models using the SAEM algorithm. Computational Statistics & Data Analysis 56(6) p. 2073-2085 (link)
  15. Delattre, M. (2010) Inference in Mixed Hidden Markov Models and Applications to Medical Studies. Journal de la Société Française de Statistique 151(1) p. 90-105 (link)

Preprints

  • Narci, R., Delattre, M., Larédo C. and Vergu, E. (2020) Inference for partially observed epidemic dynamics guided by Kalman filtering techniques. (hal-02475936)
  • Delattre, M. and Kuhn, E. (2019) Estimating Fisher Information Matrix in Latent Variable Models based on the Score Function. (hal-02285712) (arXiv:1909.06094) 

Technical Reports

  • Delattre, M., Lavielle, M. and Poursat, M.A. (2012) BIC selection procedures in mixed effects models. RR-7948, INRIA.

PhD Thesis

"Inférence statistique dans les modèles mixtes à dynamique Markovienne", defended the 4th of July 2012, under the supervision of Marc Lavielle, Paris-Sud Orsay (link to manuscript)

Softwares

R package MsdeParEst dedicated to parameter estimation in stochastic differential equations with mixed effects