En savoir plus

Notre utilisation de cookies

« Cookies » désigne un ensemble d’informations déposées dans le terminal de l’utilisateur lorsque celui-ci navigue sur un site web. Il s’agit d’un fichier contenant notamment un identifiant sous forme de numéro, le nom du serveur qui l’a déposé et éventuellement une date d’expiration. Grâce aux cookies, des informations sur votre visite, notamment votre langue de prédilection et d'autres paramètres, sont enregistrées sur le site web. Cela peut faciliter votre visite suivante sur ce site et renforcer l'utilité de ce dernier pour vous.

Afin d’améliorer votre expérience, nous utilisons des cookies pour conserver certaines informations de connexion et fournir une navigation sûre, collecter des statistiques en vue d’optimiser les fonctionnalités du site. Afin de voir précisément tous les cookies que nous utilisons, nous vous invitons à télécharger « Ghostery », une extension gratuite pour navigateurs permettant de les détecter et, dans certains cas, de les bloquer.

Ghostery est disponible gratuitement à cette adresse : https://www.ghostery.com/fr/products/

Vous pouvez également consulter le site de la CNIL afin d’apprendre à paramétrer votre navigateur pour contrôler les dépôts de cookies sur votre terminal.

S’agissant des cookies publicitaires déposés par des tiers, vous pouvez également vous connecter au site http://www.youronlinechoices.com/fr/controler-ses-cookies/, proposé par les professionnels de la publicité digitale regroupés au sein de l’association européenne EDAA (European Digital Advertising Alliance). Vous pourrez ainsi refuser ou accepter les cookies utilisés par les adhérents de l'EDAA.

Il est par ailleurs possible de s’opposer à certains cookies tiers directement auprès des éditeurs :

Catégorie de cookie

Moyens de désactivation

Cookies analytiques et de performance

Realytics
Google Analytics
Spoteffects
Optimizely

Cookies de ciblage ou publicitaires

DoubleClick
Mediarithmics

Les différents types de cookies pouvant être utilisés sur nos sites internet sont les suivants :

Cookies obligatoires

Cookies fonctionnels

Cookies sociaux et publicitaires

Ces cookies sont nécessaires au bon fonctionnement du site, ils ne peuvent pas être désactivés. Ils nous sont utiles pour vous fournir une connexion sécuritaire et assurer la disponibilité a minima de notre site internet.

Ces cookies nous permettent d’analyser l’utilisation du site afin de pouvoir en mesurer et en améliorer la performance. Ils nous permettent par exemple de conserver vos informations de connexion et d’afficher de façon plus cohérente les différents modules de notre site.

Ces cookies sont utilisés par des agences de publicité (par exemple Google) et par des réseaux sociaux (par exemple LinkedIn et Facebook) et autorisent notamment le partage des pages sur les réseaux sociaux, la publication de commentaires, la diffusion (sur notre site ou non) de publicités adaptées à vos centres d’intérêt.

Sur nos CMS EZPublish, il s’agit des cookies sessions CAS et PHP et du cookie New Relic pour le monitoring (IP, délais de réponse).

Ces cookies sont supprimés à la fin de la session (déconnexion ou fermeture du navigateur)

Sur nos CMS EZPublish, il s’agit du cookie XiTi pour la mesure d’audience. La société AT Internet est notre sous-traitant et conserve les informations (IP, date et heure de connexion, durée de connexion, pages consultées) 6 mois.

Sur nos CMS EZPublish, il n’y a pas de cookie de ce type.

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de l’INRA par email à cil-dpo@inra.fr ou par courrier à :

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2018

Menu Logo Principal AgroParisTech Université Paris Saclay

MIA Paris

Soutenance de thèse de Guillaume Damblin

20/11/2015 - 15h00 - AgroParisTech, amphithéâtre Rissler

"Contributions statistiques au calage et la validation des codes de calcul"
Lieu :

amphithéâtre Tisserand de l'AgroParisTechsitué au 16 rue Claude Bernard à Paris

Le jury sera composé de :

Gilles Celeux, Université Paris-Sud/INRIA - Rapporteur,David Ginsbourger, Idiap/Université de Berne - Rapporteur,Céline Helbert, École centrale de Lyon - Examinatrice,Marc Sancandi, CEA Cesta - Examinateur,

Éric Parent, AgroParisTech/INRA - Directeur de thèse

Résumé:

La validation des codes de calcul a pour but d’évaluer l’incertitude de prédiction d’un système physique à partir d’un code de calcul l’approchant et des mesures physiques disponibles. D’une part, le code peut ne pas être une représentation exacte de la réalité. D’autre part, le code peut être entaché d’une incertitude affectant la valeur de certains de ses paramètres, dont l’estimation est appelée « calage de code ». Après avoir dressé un état de l’art unifié des principales procédures de calage et de validation des codes de calcul, nous proposons plusieurs contributions à ces deux problématiques lorsque le code est appréhendé comme une fonction boîte noire coûteuse. D’abord, nous développons une technique bayésienne de sélection de modèle pour tester l’existence d’une fonction d’erreur entre les réponses du code et le système physique, appelée « erreur de code ». Ensuite, nous présentons de nouveaux algorithmes destinés à la construction de plans d’expériences séquentiels afin de rendre plus précis le calage d’un code de calcul basé sur l’émulation par processus gaussien. Enfin, nous validons un code de calcul utilisé pour prédire la consommation énergétique d’un bâtiment au cours d’une période de temps. Nous utilisons les résultats de l’étude de validation pour apporter une solution à un problème de statistique décisionnelle dans lequel un fournisseur d’électricité doit s’engager auprès de ses clients sur des prévisions moyennes de consommation. En utilisant la théorie bayésienne de la décision, des estimateurs ponctuels optimaux sont calculés.

Mot-clés :

Validation d’un code de calcul, Calage bayésien, Sélection bayésienne de modèle, Émulation par processus gaussien, Théorie de la décision bayésienne.