“Assessment of the sustainability of small-scale dairy systems in Central Mexico”

Liliana Fadul–Pacheco a, Fernando Prospero–Bernal a, Isela Guadalupe Salas-Reyes b, Darwin Heredia–Nava a, Benito Albarrán-Portillo b, Carlos Manuel Arriaga-Jordán a

a Instituto de Ciencias Agropecuarias (ICAR)
b Centro Universitario UAEM Temascaltepec
Universidad Autónoma del Estado de México
Small-scale Dairy Systems (Herds from 3 to 35 cows plus replacements)
(SAGARPA, 2010)

- Produce 30 - 37% of national milk production in Mexico
- Generate employment opportunities in rural areas
- Provide income that enables families to be above poverty indices
- Utilise local natural resources adapted to environmental / agroecological conditions
OBJECTIVE

Assess the sustainability of small-scale dairy systems in two areas, temperate and subtropical, in central of Mexico
Aculco: 20°05'58” N and 99°49'37”W, 2440 m.a.s.l, **Sub-humid temperate**, Rains in summer, Mean 13.2 °C, Mean rainfall 700 mm

Zacazonapan: 18° 58' 00" N and 10° 11' 00" W, 1470 m.a.s.l, **Sub-humid sub-tropical**, Rains in summer, Mean 23.0 °C, Mean rainfall 1800 mm
Zacazonapan
(Subtropical zone)
Any economic activity, in order to be sustainable, must be economically viable, ecologically sound and socially equitave” (Vilain et al., 2008).

Adaptations
17 Objectives

3 Scales (Agroecological, Socio-territorial and Economic) divided in 10 components

42 Indicators
IDEA METHOD

AGROECOLOGICAL SCALE
3 Components
- Diversity
- Organization of space
- Farming practices

33 + 33 + 34 = 100

SOCIO-TERRITORIAL SCALE
3 Components
- Quality of the products and land
- Employment and services
- Ethics and Human development

33 + 33 + 34 = 100

ECONOMIC SCALE
4 Components
- Economic viability
- Independence
- Transferability
- Efficiency

30 + 25 + 20 + 25 = 100
INDICATORS NOT INCLUDED

A4 Enhancement (valorization) and conservation of genetic heritage

A8 Ecological buffer zones

A9 Measures to protect the natural heritage

B2 Enhancement of buildings and landscape heritage

B6 Farmer – consumer relation (Direct trade)

B8 Services, multi-activities (Agro-tourism, demonstrative farms)
RESULTS
FARM CHARACTERISTICS

<table>
<thead>
<tr>
<th></th>
<th>TOTAL HA</th>
<th>HA PASTURE</th>
<th>COWS MILKING</th>
<th>COWS DRY</th>
<th>MILK YIELD L/COW/ DAY</th>
<th>MILK (€/L)</th>
<th>FAMILY LABOR</th>
<th>MILK FAT (%)</th>
<th>MILK PROTEIN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACULCO</td>
<td>6.23</td>
<td>1.45</td>
<td>9</td>
<td>2</td>
<td>13.8</td>
<td>Cost 0.23</td>
<td>2.55</td>
<td>3.63</td>
<td>3.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Price 0.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZACAZONAPAN</td>
<td>68</td>
<td>50</td>
<td>13</td>
<td>7</td>
<td>6.0</td>
<td>Cost 0.23</td>
<td>2.00</td>
<td>3.59</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Price 0.31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DROUS EASON IN ACULCO

LEVEL OF SUSTAINABILITY IN ACULCO

DROUS EASON IN ZACAZONAPAN

LEVEL OF SUSTAINABILITY IN ZACAZONAPAN
CONCLUSIONS

• In both areas the highest sustainability score is in the rainy season, when there is a lower reliance of external inputs, in contrast with the dry season where lack of forages increases the reliance in external inputs (mostly concentrates).

• The agroecological scale obtained the highest scores given the diversity of species and the use of manure as organic fertiliser. Weaknesses were reliance on fossil fuels, no crop rotation and a high use of agro-chemicals in the maize crop.
CONCLUSIONS

• Strengths in the socio-territorial scale are good values in milk components, strong community linkages, good access to farms, and the generation of self-employment, and both permanent and temporary employment in the area. Weaknesses are high reliance on external inputs, work intensity and skepticism on the future of the farms.
CONCLUSIONS

• The major weakness is in the economic scale of these systems in both areas and in both seasons; due to low economic efficiency and low level of management skills of farmers to improve their systems.

• There is a high reliance on bought-in inputs in all farms, year round in the temperate area, and during the dry season in the subtropical dual purpose farms; which result in high production costs and lower scores in the economic scale.
CONCLUSIONS

• Results enable the identification of opportunity areas of intervention that may increase the sustainability of the systems, by increasing the reliance of home grown feeds, better management of the available resources – which may involve reducing the number of cows in the very small farms of the temperate area and improving the management of pastures in the subtropical area.

• The IDEA method has proven a useful tool for assessing the sustainability of these small-scale dairy systems identifying critical points and areas of opportunity to improve their sustainability.
¡¡¡GRACIAS!!!