Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo TULIP Nouveau bandeau tutelles EN


A non canonical subtilase attenuates the transcriptional activation of defence responses in Arabidopsis thaliana

Irene Serrano*, Pierre Buscaill*, Corinne Audran, Cécile Pouzet, Alain Jauneau, Susana Rivas (*Equal contribution)

A non canonical subtilase attenuates the transcriptional activation
LIPM researchers identified an atypical protease of the subtilase family [SBT5.2(b)] that attenuates the transcriptional activation of plant defence independently of its protease activity. The SBT5.2 gene produces two distinct transcripts encoding a canonical secreted subtilase [SBT5.2(a)] and an intracellular protein [SBT5.2(b)]. Concomitant to SBT5.2(a) downregulation, SBT5.2(b) expression is induced after bacterial inoculation. SBT5.2(b) localizes to endosomes where it interacts with and retains the defence-related transcription factor MYB30. Nuclear exclusion ofMYB30 results in its reduced transcriptional activation and, thus, suppressed resistance.

In the model plant Arabidopsis, a protein named MYB30 is one transcription factor that is able to promote disease resistance. Previous research identified some proteins that can reduce the activity of this transcription factor to avoid triggering a response when it is not needed, for example, when no infectious microbes are present. However, it was likely that other proteins were also involved in the process.


SBT5.2 transcripts destinations © Susana Rivas

Now, Serrano et al. report that an enzyme called SBT5.2 is an additional negative regulator of MYB30 activity. SBT5.2 belongs to a family of protein-degrading enzymes called subtilases, which are typically localized outside cells. As such, it was unclear how SBT5.2 could interact and regulate a transcription factor that is found inside the nucleus of plant cells. Nevertheless, Serrano et al. found that the gene that encodes SBT5.2 actually gives rise to two distinct proteins. The first is a classical subtilase that is indeed located outside of the cell, and so cannot interact with MYB30 and does not affect its activity. The second protein is an atypical subtilase that localises to bubble-like compartments called vesicles within the cell and is able to highjack MYB30 on its way to the nucleus. When the atypical subtilase interacts with MYB30 at vesicles, it stops MYB30 from entering the nucleus. As a result, MYB30 cannot bind to the DNA nor activate its target genes. This means that the defensive response that normally depends on MYB30 is weakened.

The work of Serrano et al. uncovers a new way to regulate the expression of defence-related genes. Further unravelling the molecular mechanisms involved in the fine-tuning of gene expression represents a challenging task for future research.