Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal Logo Aberystwyth University Logo IPK Logo EPHE Logo Ilvo



Bridging landscape genomics and quantitative genetics for a regional adaptation of European grasslands to climate-change

In the next decades, grasslands as important ecosystems and basis of dairy and meat production are likely to experience damages and subsequent production losses due to changing climate. Recent events (e.g. severe drought in Western Europe in 2003) highlighted an insufficient capacity in local populations of grassland species to cope with unusual climatic events. However, most grassland species show a large ecotypic diversity over wide environmental ranges. We consider that this large ecotypic diversity could be used to recombine natural climatic adaptations and value for services to create improved populations of grassland species adapted to the foreseen future regional climates. To implement this strategy, it is necessary to have extended knowledge of the adaptive diversity existing in grassland species.

With this aim, we intend to use an innovative methodological frame (landscape genomics) to screen the natural diversity of a grassland species (perennial ryegrass) in order to discover genetic variability involved in environmental adaptation, and more specifically in climatic adaptation. The landscape genomics approach is based on the combined use of methods correlating genomic polymorphisms and environmental variations at sites of origin of genotypes and of tests of signature of selection. To implement this frame, we will use a genotyping method based on massively parallel sequencing technology applied to 550 populations of perennial ryegrass sampled across the whole area of primary expansion of this species (Europe, Northern Africa and Near East). These populations will be taken out from genebanks of plant breeding institutes or collected in situ across Europe. Our genotyping protocol is expected to deliver several tens thousands of polymorphisms sites along perennial ryegrass genome. We will furthermore phenotype these populations in fields and in controlled environment to record agronomic and eco-physiological traits.

Association models between genomic polymorphisms and environmental variations will be used to map the spatial distribution of genomic markers linked to adaptive diversity in present climatic conditions and to foresee possible shifts in the spatial range fitting these markers in the context of several climate change scenarios based on the four Representative Concentration Pathways of IPCC AR5. Based on these results, we will define allelic profiles of perennial ryegrass expected to provide climatic adaptation at regional scale over Europe under the future climatic conditions foreseen by climate models. We will consider combining climatic adaptation and value for services by genetic recombination. We will finally design a number of genetic pools mixing different natural populations. These genetic pools will be the basis to initiate breeding programmes aiming to deliver improved populations adapted to future regional climates. These improved populations will enable to restore grasslands degraded by future climatic disruptions.