Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal

Encyclop'Aphid : l'encyclopédie des pucerons


Aphid damage on Poaceae

Three species of aphids are frequent on wheat, barley and maize: the oat-bird cherry aphid (Rhopalosiphum padi), the English grain aphid (Sitobion avenae) and to a lesser extent the rose-grain aphid (Metopolophium dirhodum). The former is particularly abundant on maize at the end of summer and beginning of autumn, and on early-sown winter cereals (beginning of October). The other two are more active mainly in spring on barley and especially wheat where Sitobion avenae can decrease the yield by 10% and more when it proliferates from the beginning of ear formation to grain filling. At the end of autumn, colonies of the corn-leaf aphid (Rhopalosiphum maidis)  are also frequent on barley regrowth, then on young barley seedlings, although they do not appear to cause significant damage on the latter.

In maize, when growth has finished, leaves and panicles can be seen covered with colonies of Rhopalosiphum padi which excrete honeydew on which sooty moulds develop. The damage results from reduced photosynthesis which can lead to failure of grain formation.

These aphids can also develop on Poaceae for fodder and forage and show a degree of host specifity: hence Rhopalosiphum padi is found mainly  on ryegrass, Sitobion avenae on Dactylis  (cocksfoot grasses) and Metopolophium dirhodum on Festuca (fescue). A fourth species, Metopolophium festucae, is quite frequent on leaves of a greater range of Poaceae. On the collar and roots underground aphid species occur such as Anoecia spp. and Tetraneura spp.

Rhopalosiphum padi, Sitobion avenae and Metopolophium dirhodum are the principal vectors of barley yellow dwarf virus (BYDV and/or CYDV). These viruses are transmitted  by the persistent mode: at the end of summer, the aphids (especially Rhopalosiphum padi, which are the most abundant), have acquired the viruses on regrowth of straw cereals, maize and Poaceae for fodder, and transmit them to barley and wheat seedlings that have managed to sprout before the end of the aphids’ flight-time (beginning of November in the northern half of France). On winter cereals symptoms start to show in February. They are particularly severe in barley (death of plantlets, yellowing of leaves, abnormal tillering) and amplify in spring (poor stem growth, weak ear formation, small seeds). Spring barley is extremely sensitive to any contamination in spring, passed on mainly by Metopolophium dirhodum and Sitobion avenae.

In wheat the symptoms are milder (adult plants slightly smaller and reddening of the last leaf) than in barley. However, yield reduction, which can reach several tens of quintals per hectare, is in the same order of magnitude in the two growing plots where the sowing date was exactly the same. In maize BYDV is transmitted in spring by aphids coming from infected cereals and grasses grown for fodder. The infection is often asymptomatic, yet reddening sometimes appears at the edges of the leaf blades. Any yield losses appear to be rare and small. Rhopalosiphum padi, Sitobion avenae and also numerous species not dependent on Poaceae, transmit maize dwarf mosaic virus (MDMV) by the non-persistent mode. That disease is quite frequent in the Mediterranean area. The fodder species therefore act as reservoirs for viral diseases transmitted by many species of aphids. 

The barley yellow dwarf viruses are capable of infecting all Poaceae grown for fodder and forage. Symptoms are seen only rarely, except in ryegrass (reddening or yellowing of older leaves). The cocksfoot streak virus (CSV) is also passed on by the aphids of Poaceae through le non-persistent mode

Insecticide dressings only involve barley and wheat, on autumn seedbeds against vectors of BYDV, and only wheat in spring against Sitobion avenae. In the first situation, seed coating with a systemic neonicotinoid insecticide can help avoid the spread of the viruses in the field. Foliar treatments can also be applied using a pyrethrinoid at the plantlet stage. There is a decision support tool that helps in deciding what treatment to use. It enables the operator to conduct the appropriate treatments based on a simulation of aphid populations from the point of ear formation. In the case of Sitobion avenae in spring, only foliar treatments are possible. They are not necessary if less than half the ears are infested at ear-formation stage.