Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal

Encyclop'Aphid : l'encyclopédie des pucerons


Aphids and their symbiotic partners

by Jean-Christophe Simon

Aphids have vital relationships with symbiotic bacteria that allow them to feed on sap, an environment poor in nitrogen compounds. They are also infected with other microorganisms, which are not essential for their survival but whose effects on the ecology and evolution of their aphid hosts can be of great importance.

An obligatory symbiosis with Buchnera aphidicola

Many insects live in symbiosis with micro-organisms that allow them to better exploit the resources of their habitats or to better protect themselves from environmental stresses. Aphids have established symbiotic relationships with the bacterium Buchnera aphidicola for more than 150 million years, which provides them with essential amino acids and vitamins absent or in small quantities in the sap of the plants from which they feed. Without this obligatory symbiont, aphids cannot survive and vice versa for Buchnera, which creates an interdependence between the two organisms.

A consortium of facultative or secondary symbionts

However, Buchnera is not the only microbial symbiont harbored by aphids and since the early 2000s, discoveries of new partners and their effects on their hosts have followed one another. These symbionts, mostly bacterial, are generally found at intermediate frequencies in populations: not all individuals are infected unlike the symbiosis with Buchnera and we therefore speak of facultative or secondary symbionts. In certain aphid species such as the Lachninae, tripartite symbionts may have evolved where Buchnera and another symbiotic bacterium complement each other to provide the aphid with the nutrients essential for its development and reproduction

Localization of symbionts in specialized organs

Most of the symbiotic bacteria reside in specialized organs of the host, called bacteriocytes, located on either side of the digestive tract. An adult female of the pea aphid Acyrthosiphon pisum thus comprises approximately 90 bacteriocytes harboring in total more than 10 million Buchnera cells. The facultative symbionts can reside in different internal organs of the host: they can for example co-exist in the same bacteriocytes as Buchnera or reside in secondary bacteriocytes, in cells on the periphery of the bacteriocytes and in the hemolymph.

Mother-to-daughter transmission with occasional horizontal transfers

The symbionts are mainly transmitted vertically: Buchnera and other facultative symbionts are transferred at a very early stage in the embryonic development of aphids. The embryos therefore receive the symbionts from their mother in utero. The vertical transmission of Buchnera is reflected in phylogenetic analyzes which reveal a perfect co-diversification of the two partners since the establishment of this symbiosis. This is not always the case with facultative symbionts, which show occasional horizontal transfer events between unrelated hosts. The horizontal transfer routes are unknown but could involve contacts between congeners, attacks by natural enemies or acquisition via host plants.

A wide range of effects of symbionts on their hosts

While Buchnera's role for aphids is well known and strictly nutritional in nature, that of optional symbionts is very varied and not always well understood. The facultative symbionts can thus influence the response to biotic or abiotic stresses, reproduction, development, immunity, behavior and even color. The pea aphid is certainly the species for which the effects of symbionts have been best studied. It has thus been shown that the bacterium Hamiltonella defensa could protect aphids against attacks by parasitoid wasps, that Regiella insecticola made its hosts more resistant to pathogenic fungi, that Rickettsiella viridis modified aphid body color, that Spiroplasma selectively eliminated the male embryos in the offspring, that Serratia symbiotica conferred better tolerance to heat. However, these beneficial effects are very often accompanied by physiological or ecological costs, which translate into reduced fecundity or behavioral defenses for aphids carrying facultative symbionts.

Aphid symbioses: a very dynamic field of research

Many research teams are currently working on aphid symbioses. They study in particular the molecular interactions between aphids and their symbionts to better understand the effects of the latter on their hosts and how the aphids regulate their populations of symbionts. They are also interested in the dynamics of symbiotic associations to identify the factors involved in the acquisition, evolution, loss of symbionts in aphid lineages. Finally, they explore the influence of symbionts in ecological networks, notably by questioning the consequences of protective symbiosis on communities of natural enemies.

Section of an embryo of the aphid Acyrthosiphon pisum with labeling of bacteriocytes containing Buchnera aphidicola (in green). Photographer: Karen Gaget and Federica Calevro.

Buchnera 1

Microscopic image obtained by fluorescence in situ hybridization (FISH) showing the location and morphology of the symbionts of the aphid Tuberolachnus salignus (Buchnera aphidicola in green and Serratia symbiotica in red). Photographer: Alejandro Manzano-Marin.