Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie

Purpose

Shelf life

CAS and PHP session cookies

Login credentials, session security

Session

Tarteaucitron

Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie

Purpose

Shelf life

atid

Trace the visitor's route in order to establish visit statistics.

13 months

atuserid

Store the anonymous ID of the visitor who starts the first time he visits the site

13 months

atidvisitor

Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at cil-dpo@inrae.fr or by post at :

INRAE

24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal

Home page

Project presentation

The main objective of the Deffilait project is to provide the essential and necessary elements for improving the feed efficiency of dairy cows through new phenotyping tools.

Presentation

    The livestock sector is highly concerned by the global food system, both by an expected increase in the demand for animal products such as milk, and by the ecological footprint of animal production, which must be minimized. Increasing feed efficiency (FE) in dairy cows would reduce some of the direct emissions (methane and ammonia) from livestock production but would also have a substantial positive impact on the induced emissions associated with crop production, due to the better feed conversion. Genetic improvement of FE is a particularly attractive strategy because it would impact most of the dairy farms for a limited cost. The decreased use of feed inputs implied by such an efficiency gain would give a competitive advantage to dairy production, but will also contribute to reducing environmental impacts. Thus, this project is expected to provide the essential elements needed for genetic selection strategies to improve FE in dairy cows. It fits with the fifth of the major societal challenges of ANR and the first research theme of the Apis-Gene company on FE and limitation of N pollution and methane emission by ruminants to improve the overall efficiency of ruminants. Selecting for FE is not as straightforward as it might first seem, there is evidence to suggest that robustness and adaptive capacity, especially for reproductive females, can be adversely affected by short-sighted strategies to improve efficiency. Thus, the choice of indicators used to assess FE is of great important, and it is essential to verify and validate the anticipated benefits of any such strategies to improve efficiency for their long-term consequences. Another key issue is to be able to better exploit new possibilities to target specific characteristics that contribute in part to FE. Such characters have rarely been studied because they have been very difficult to phenotype. The project will use new phenotyping technologies and the newly available information from them to develop selection for efficient use of body reserves whilst limiting the risks of undesirable trade-offs with other life functions that have been associated with high levels of production in dairy cows. Deffilait aims to elucidate ways by which to improve the FE of dairy cows without decreasing their robustness, to build strategies for doing this, and models to predict the future increases in FE attainableby selection programs, and directly on farm. The project will first involve developing new tools for large-scale phenotyping of the major biological characteristics that are directly involved in FE. Theproject will produce new tools to better estimate body condition, morphology, and digestive efficiency in large scale studies. These phenotypic measures will also impact on our capabilities for on-farm advising, and monitoring in livestock, which are also levers for improving efficiency at farm level. Then, to study the major determinants of FE, the project will also build an original database of dairycow lactations with a large set of phenotypes to describe the main sources of energy transformation, thus explaining the observed between-animal variability in FE. This dataset will then be used to quantify the contribution of the different mechanisms to the variability in FE, and to test different indicators and strategies to improve FE. A specific focus will be made on body reserves mobilization in early lactation to assess its genetic components and correlation with other traits with a larger dataset involving commercial farms. The project will then develop simulation tools to predict the short- and long-term consequences of different selection strategies in different environments. The expected results will contribute to the definition of strategies of selection to combine efficiency and robustness. The project will provide a coherent framework to undertake a balanced genetic selection on these traits, and thereby make a significant - and lasting - contribution to improving FE.

The project was retained by the ANR for a total amount of aid requested of € 703,429 and a duration of 4 years (2016-2019). The project is funded by € 448,000 by ApisGene.