

Reduced tillage in organic farming systems in Europe: lessons learnt from the TILMAN-ORG project

Paul Mäder, FiBL* (paul.maeder@fibl.org) Christophe David, ISARA Andreas Fliessbach, FiBL* Paolo Bàrberi, SSSA Julia Cooper, UNEW

*Research Institute of Organic Agriculture, Switzerland

Organic Food Systems, Long Beach, 1-2 Nov 2014

Background

- 40% of soils in Europe are low in organic carbon
- Increased carbon stocks in top soil in organic farming (Gattinger et al., PNAS, 2012)
- Conservation agriculture to restore and ameliorate essential soil functions (crop production, biodiversity, climate mitigation)
- Conservation tillage: No till and Reduced tillage (shallow inversion, non inversion techniques, e.g. chisel)
- No till:
 - well developed in conventional systems, dependent on herbicides and mineral fertilizers
 - circa 6% lower yield than plough systems (Pittellkow et al., Nature, 13809)
 - increases carbon stocks, at least in top soil.
- Is reduced tillage a viable alternative in organic farming systems? Focus yield and soil quality

Conceptual framework TILMAN-ORG

Modified after Giller et al., 2008. *Ecology and Society* **13**(2): 34. [online] URL: http://www.ecologyandsociety.org/vol13/iss2/art34/

Brussard, WU

Machines for reduced tillage: examples

Chisel with wide overlapping sweeps (shallow), and narrow tines for loosening

Skim plough for removal of grassclover and stubble cleaning

Seed bed preparation

TILMAN-ORG A European Network

TILMAN-ORG: Reduced tillage and green manures for sustainable organic cropping systems

"The TILMAN-ORG project's overall goals are to design improved organic cropping systems with:

- enhanced productivity and nutrient use efficiency,
- more efficient weed management and increased biodiversity, but
- lower carbon footprints (in particular increased carbon sequestration and lower GHG emissions from soils)."

Project coordination: Paul Mäder, FiBL

Farm survey: Distribution of strategies of winter cereal management

TILMAN-ORG A European Network Peigné, Casagrande, Payet, David, Mäder et al., accepted, Renewable Agriculture and Food System

Field trials and farm surveys under investigation in the European network TILMAN-ORG

Meta-analysis: Classification of tillage treatments

Yields - compared to deep inversion

What is the magnitude of the effect of reduced tillage intensity on crop yields in organic systems?

Deep non-inversion – greatest yield reduction ~ 11%

Shallow inversion shows no significant yield reduction – 2.6%

A European Network

Cooper, Baranski, Nobel de Lange, Peigné, Fliessbach, Mäder et al., unpublished

Yields - compared to shallow inversion

What is the magnitude of the effect of reduced tillage intensity on crop yields in organic systems?

Compared to shallow inversion – no yield reduction

No tillage increases yields! Why?

A European Network

Cooper, Baranski, Nobel de Lange, Peigné, Fliessbach, Mäder et al., unpublished

11

Yields – in different climatic zones

Is this effect consistent across all environments (soil types and climatic zones)?

TILMAN-ORG A European Network Cooper, Baranski, Nobel de Lange, Peigné, Fliessbach, Mäder et al., unpublished

Yields – effect of soil type

Is this effect consistent across all environments (soil types and climatic zones)?

Carbon as affected by tillage

Does using reduced tillage in organic systems increase soil organic C above the levels already achieved by organic practice?

Key findings Meta Analysis

- Yield reductions from reducing tillage intensity can be quite small or non-existent depending on the system and environment
- Converting to shallow inversion tillage from deep inversion – minimal yield reductions, significant C gains, if weeds are controlled
- Weed pressure is not the only factor driving yield reductions under reduced tillage
- Particular benefits to reducing tillage intensity in dry climates – water relations?
- Challenges in light soils compaction?

Cooper, Baranski, Nobel de Lange, Peigné, Fliessbach, Mäder et al., unpublished

Case study: Reduced tillage and cover crops in organic arable systems preserve weed diversity without jeopardising crop yield

- Ploughing to be phased out in organic farming?
- Conservation agriculture (CA) in organics
 - Where do we stand with weed management?

TILMAN-ORG A European Network

Weed abundance

PLO < RED vs PLO \geq RED: P = 0.273ns (χ^2 test, df=1)

Bàrberi et al., SSSA, unpublished 17

Crop yield

PLO > RED *vs* **PLO** ≤ **RED**: **P** = **0.049*** (χ^2 test, df=1)

Bàrberi et al., SSSA, unpublished 18

Case study: Yield, mineral nitrogen in spring (N-min), nitrogen use efficiency (NUE) and N surplus (Nsurplus) 9 experiments

	Tillage			Green Manure (GM)		
	plough	RT	р	-GM	+GM	р
Yield [% of control (RT, - GM)]	100	92	<0.001	100	108	0.001
N _{min} [% of control (RT, - GM)]	100	85	<0.001	100	128	<0.001
NUE [%]	182	129	<0.001	278	169	0.002
N-surplus [kg N ha ⁻¹]	10	23	0.098	-4	37	<0.001

TILMAN-ORG A European Network

Koopmans et al., LBI, submitted

Case study: The organic long-term tillage trial in Frick, Switzerland

- Since 2003
- Strip split-plot design
- 6 years crop rotation
- Heavy clay soil (Cambisol, Ø 50 % clay)
- Ø 1000 mm, 9 ºC

- Tillage
 - Plough (CT, 15 cm)
 - Reduced tillage (RT, 10 cm)
- Fertilisation
 - Diluted slurry only (SL)
 - Manure compost/slurry (FYM)
 - Ø N input 2013: 113 kg Nt ha⁻¹

Relative impact (in percent) of reduced tillage on earthworm and microbial biomass

Conventional tillage (CT) = 100%)

Kunz et al., 2013, Pedobiologia 21

Greenhouse gas fluxes influenced by tillage

Cumulative nitrous oxide emissions

Table 1. Least square means of cumulative N₂O flux rates per treatment for the grass-clover (18/09/12 - 20/09/13) and ley destruction (22/09/13 - 21/11/13) period

	Grass-clover (1 year)				Ley destruction (2 months)		
	N ₂ O-N	GWP in CO ₂ -eq.		EF*	N ₂ O-N		
	kg ha ⁻¹	area: kg ha ⁻¹	yield: kg t⁻¹ DM	%	kg ha ⁻¹		
СТ	0.95	445.3	39.1		1.04		
RT	0.98	459.5	42.8	0.86	1.34		
FYM	0.88	412.0	38.6		1.42		
SL	1.05	492.9	43.4		0.96		
RT/CT	103 %		110 %		128 %		
SL/FYM	120 %		113 %		68 %		
Tillage	ns	ns	ns		ns		
fertilisation	ns	ns	ns		p = 0.041		
tillage x fertilisation	ns	ns	ns		ns		

*EF = emission factor (kg N₂O–N / kg N input × 100), biol. fixed clover N was excluded

Trial treatments: CT = ploughing, RT = reduced tillage, FYM = farmyard manure/slurry, SL = slurry only

Kraus et al., FiBL, unpublished 23

Farm prototyping

TILMAN-ORG A European Network

Casagrande, Peigné, David, et al, ISARA

Strengths and Weakness of : (1) conservation tillage systems versus conventional tillage (ploughing) in 5 long-terms experiments and (2) between green manure with mixed, legumes and non-legumes species in 1 long-term experiment

Conservation tillage vs. ploughing	Strengths	Weakness
Frankenhausen – WIZ	Macrofauna conservation (in biodiversity conservation)	Control of weeds, pest and disease (in long-term ability to produce)
Broekemahoeve-BASIS – WUR	Macrofauna, micro fauna and flora conservation (in biodiversity conservation) Environmental quality	Control of weeds, soil structure (in long- term ability to produce)
THIL – ISARA Lyon	Macrofauna, micro fauna and flora conservation (in biodiversity conservation) Environmental quality	Control of weeds, soil structure, P and K fertility in (long-term ability to produce) Economic results (direct seeding)
HMGU-org 3 (Sheyern) – HMGU	Micro fauna conservation P and K fertility (if high fertilization)	Soil structure, Economic results (but just little bit lower than conventional)
Frick – Fibl	Macrofauna and micro fauna conservation (in biodiversity conservation)	Control of pest and diseases (in long-term ability to produce)
Green manure (legumes, mixed and non-legume)	Strengths	Weakness
	Biodiversity conservation with non- legume green manure	P and K stress with mixed green manure (in long-term ability to produce)

A European Network

Peigné, et al., ISARA, unpublished

Conclusions

- Reduced tillage in organic farming is a viable option to ascertain vital ecosystem functions:
 - Yield
 - Maintenance biodiversity
 - Soil quality
 - Climate mitigation?
- Major research questions for the future
 - Weed control
 - Hybrid systems
 - In-depth knowledge on microbial processes of N-cycle
 - Interactions soil biological and soil physical parameter

Acknowledgements

The author(s) gratefully acknowledge the financial support for this project provided by the CORE Organic II funding bodies, being partners of the FP7 ERA-Net project, CORE Organic II (www.coreorganic2.org), including the national funding organizations.

www.tilman-org.net

TILMAN-ORG A European Network

Supplemental materials

Data sources meta-analysis

- Raw data from 15 experiments; project partners and others; European and Canadian
- Data from literature and raw data combined 58 studies
- Criteria:
 - experiment under organic management for at least three years prior to the date of response measurement
 - at least two levels of tillage intensity included as a treatment
 - no "mixing" of treatments i.e. only tillage varied between experimental treatments
 - included climatic zones found in Europe

Cooper, Baranski, Nobel de Lange, UNEW, et al., unpublished²⁹

Soil structure

October 27th 2008

Reduced tillage

Plough

TILMAN-