Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal

Scientific documents annotation with @Web

New publication: Decision support system for eco-efficient biorefinery process comparison using a semantic approach.

Enzymatic hydrolysis of the main components of lignocellulosic biomass is one of the promising methods to further upgrading it into biofuels. Biomass pre-treatment is an essential step in order to reduce cellulose crystallinity, increase surface and porosity and separate the major constituents of biomass. Scientific literature in this domain is increasing fast and could be a valuable source of data. As these abundant scientific data are mostly in textual format and heterogeneously structured, using them to compute biomass pre-treatment efficiency is not straightforward. This paper presents the implementation of a Decision Support System (DSS) based on an original pipeline coupling knowledge engineering (KE) based on semantic web technologies, soft computing techniques and environmental factor computation.

The DSS allows using data found in the literature to assess environmental sustainability of biorefinery systems. The pipeline permits to: (1) structure and integrate relevant experimental data, (2) assess data source reliability, (3) compute and visualize green indicators taking into account data imprecision and source reliability. This pipeline has been made possible thanks to innovative researches in the coupling of ontologies, uncertainty management and propagation. In this first version, data acquisition is done by experts and facilitated by a termino-ontological resource. Data source reliability assessment is based on domain knowledge and done by experts. The operational prototype has been used by field experts on a realistic use case (rice straw). The obtained results have validated the usefulness of the system. Further work will address the question of a higher automation level for data acquisition and data source reliability assessment.