Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal Logo partenaire


Temporal evolution of bacteria fungi proportions in forest soils in spring

This issue is important to better understand the current and future functioning of forests and their ability to mitigate or enhance the impact of global change.

Funded under the Call for Emergence 2016, the SPRING project took place over 6 months (2017).
Project leader: Laure BARTHES (ESE Laboratory: Ecology, Systematics, Evolution).      Other people involved from the laboratory: Gaëlle VINCENT (IE) ; Baptiste Laffont (M2 trainee).             

Partner in BASC: ECOSYS laboratory (Functional ecology and ecotoxicology of agroecosystems): Claire CHENU (Pr) ; Valérie POUTEAU (Tech R).

Tree and forest growth is limited by a range of nutrients and more particularly by nitrogen in temperate environments1. This limitation could be enhanced by global changes due to the fertilization effect of CO2: increased growth due to increased CO2 would increase plant demand for mineral nitrogen and then its sequestration in plant biomass and soil organic matter, leading to a progressive limitation of soil nitrogen availability2. Global changes may also increase mineral N availability in the soil through increased N deposition3 and enhanced mineralization4. Understanding the nitrogen cycle in forest ecosystems and its impact on the carbon balance therefore requires a good understanding of the temporal dynamics of the different nitrogen pools in the tree-soil-microbes system.

Contexte Printemps

Soil 15N labeling experiments have demonstrated a preferred use of nitrogen from the tree's internal reserves for new leaf formation in the spring associated with high microbial immobilization5. The question then arises as to whether there is a limitation of soil nitrogen supply at this time by microbial immobilization and to identify the microbial players responsible for this limitation. The fatty acids contained in bacterial and fungal walls, the PLFA (Phopho Lipid Fatty Acid) are specific to large microbial groups and their determination in soil provides a picture of the composition of the living microbial biomass6. The objective of the SPRING project is to identify the major microbial groups responsible for nitrogen immobilization in forest soils in spring using the PLFA technique.

The question addressed is important to better understand the current and future functioning of forests and their ability to mitigate or enhance the impact of global changes because of the links between microbial N immobilization, N uptake by trees, tree growth and their function as carbon sinks.

Cover vidéo Printemps

==> The project leader explains the project and its RESULTS in VIDEO  (LabEx BASC scientific days, February, 2021)


Figure printemps

The bacterial pool is the majority pool of the microbial biomass (Figure 1). The variations of the nitrogen stock in the microbial biomass are linked to the variations of the bacterial pool (Figure 1: Evolution of the proportion of the different PLFA in the microbial biomass of a forest soil over time. Barbeau Forest. T0 = March 1, 2016)

Collaboration between ESE, which quantified microbial immobilization, and ECOSYS, which provided the project with its expertise in identifying microbial groups, made it possible to assess the relative contribution of bacteria and fungi to microbial nitrogen immobilization in the spring. The BASC funding allowed the initiation of this collaboration, which is currently being pursued through the writing of papers resulting from the experimental work of the Master 2 internship and a new thesis project related to agroforestry funded by C-LAND.


1. Rennenberg and Dannenmann 2015

2. Luo et al. 2004

3. Galloway et al. ? 2003

4. Zack et al. ? 1993

5. Bazot et al., 2016; Maxwell et al., 2020

6. Kaur et al., 2005