Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal RMT (Mixt Technological Network) Animal Farms and Environnement French Environment and Energy Management Agency logo "animal emissions" animal emissions

Animal Emissions

Guidelines for the measurement of air flow rate with the heat productions of animals in animal houses

figure_BilanT_H2O_CO2

Introduction

When the air flow and the CO2 gradient measurements are difficult, the animal housing thermal balance makes it possible to estimate the rate of ventilation suitably. The objective is thus to make measurements containing moisture and temperature, even if the ventilation is natural or forced. However, to apply this method it is necessary that the heat produced by the animals model is applied and that other sources (heating, conducting transfer by the walls, are known or negligible).

the principle is identical to the tracing one: one suppose the heat fluxes are known, that the ventilation explains the relation between heat production and temperature variation (or enthalpy, or steam), and one deduce that the ventilation rate equalizes the report/ratio of the temperature variation by the production of heat leaving by ventilation.

Equipment

Moisture and temperature are measured inside and outside the house. Given the high sensitivity of the ventilation deduced from the latent heat production to the steam gradient, it is very important that the moisture sensors are correctly maintained and calibrated.

In addition an estimate of the weight and the production (growth) of the animals is necessary. The result is not very sensitive to this input. Consequently if a measurement is preferable, what the farmer says is often sufficient.

Guideline details

File (PDF)